基于学习的可解释分类散射变换

M. Thomas, Fillatre Lionel, Deruaz-Pepin Laurent
{"title":"基于学习的可解释分类散射变换","authors":"M. Thomas, Fillatre Lionel, Deruaz-Pepin Laurent","doi":"10.23919/eusipco55093.2022.9909816","DOIUrl":null,"url":null,"abstract":"Vessel noise classification is generally considered as a challenging task due to its need for robustness and reliability. Thus, classification in this domain mainly relied on expert feature. Raw waveform architectures have been historically avoided, despite their performances in other domains. This paper proposes a Learning-based Scattering Transform (LST) that efficiently learns temporal dependencies within cyclostationary signals, such as vessel noises. The LST is implememented as a Convolutional Neural Network (CNN) with short filters whose structure mimics a multiscale signal decomposition. By this way, the architecture of our neural network is intrinsically explainable. Numerical simulations compare our method to an other explainable model and classic convolutional neural networks.","PeriodicalId":231263,"journal":{"name":"2022 30th European Signal Processing Conference (EUSIPCO)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Learning-Based Scattering Transform for Explainable Classification\",\"authors\":\"M. Thomas, Fillatre Lionel, Deruaz-Pepin Laurent\",\"doi\":\"10.23919/eusipco55093.2022.9909816\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Vessel noise classification is generally considered as a challenging task due to its need for robustness and reliability. Thus, classification in this domain mainly relied on expert feature. Raw waveform architectures have been historically avoided, despite their performances in other domains. This paper proposes a Learning-based Scattering Transform (LST) that efficiently learns temporal dependencies within cyclostationary signals, such as vessel noises. The LST is implememented as a Convolutional Neural Network (CNN) with short filters whose structure mimics a multiscale signal decomposition. By this way, the architecture of our neural network is intrinsically explainable. Numerical simulations compare our method to an other explainable model and classic convolutional neural networks.\",\"PeriodicalId\":231263,\"journal\":{\"name\":\"2022 30th European Signal Processing Conference (EUSIPCO)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 30th European Signal Processing Conference (EUSIPCO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/eusipco55093.2022.9909816\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 30th European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/eusipco55093.2022.9909816","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

船舶噪声分类是一项具有挑战性的任务,因为它需要鲁棒性和可靠性。因此,该领域的分类主要依赖于专家特征。尽管原始波形架构在其他领域表现出色,但它们在历史上一直被避免使用。本文提出了一种基于学习的散射变换(LST)方法,可以有效地学习周期平稳信号(如船舶噪声)中的时间依赖性。LST是由卷积神经网络(CNN)实现的,该网络带有短滤波器,其结构模拟了多尺度信号分解。通过这种方式,我们的神经网络架构在本质上是可解释的。数值模拟将我们的方法与另一种可解释模型和经典卷积神经网络进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Learning-Based Scattering Transform for Explainable Classification
Vessel noise classification is generally considered as a challenging task due to its need for robustness and reliability. Thus, classification in this domain mainly relied on expert feature. Raw waveform architectures have been historically avoided, despite their performances in other domains. This paper proposes a Learning-based Scattering Transform (LST) that efficiently learns temporal dependencies within cyclostationary signals, such as vessel noises. The LST is implememented as a Convolutional Neural Network (CNN) with short filters whose structure mimics a multiscale signal decomposition. By this way, the architecture of our neural network is intrinsically explainable. Numerical simulations compare our method to an other explainable model and classic convolutional neural networks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Assessing Bias in Face Image Quality Assessment Electrically evoked auditory steady state response detection in cochlear implant recipients using a system identification approach Uncovering cortical layers with multi-exponential analysis: a region of interest study Phaseless Passive Synthetic Aperture Imaging with Regularized Wirtinger Flow The faster proximal algorithm, the better unfolded deep learning architecture ? The study case of image denoising
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1