原位人工智能:面向物联网系统的自主和增量深度学习

Mingcong Song, Kan Zhong, Jiaqi Zhang, Yang Hu, Duo Liu, Wei-gong Zhang, Jing Wang, Tao Li
{"title":"原位人工智能:面向物联网系统的自主和增量深度学习","authors":"Mingcong Song, Kan Zhong, Jiaqi Zhang, Yang Hu, Duo Liu, Wei-gong Zhang, Jing Wang, Tao Li","doi":"10.1109/HPCA.2018.00018","DOIUrl":null,"url":null,"abstract":"Recent years have seen an exploration of data volumes from a myriad of IoT devices, such as various sensors and ubiquitous cameras. The deluge of IoT data creates enormous opportunities for us to explore the physical world, especially with the help of deep learning techniques. Traditionally, the Cloud is the option for deploying deep learning based applications. However, the challenges of Cloud-centric IoT systems are increasing due to significant data movement overhead, escalating energy needs, and privacy issues. Rather than constantly moving a tremendous amount of raw data to the Cloud, it would be beneficial to leverage the emerging powerful IoT devices to perform the inference task. Nevertheless, the statically trained model could not efficiently handle the dynamic data in the real in-situ environments, which leads to low accuracy. Moreover, the big raw IoT data challenges the traditional supervised training method in the Cloud. To tackle the above challenges, we propose In-situ AI, the first Autonomous and Incremental computing framework and architecture for deep learning based IoT applications. We equip deep learning based IoT system with autonomous IoT data diagnosis (minimize data movement), and incremental and unsupervised training method (tackle the big raw IoT data generated in ever-changing in-situ environments). To provide efficient architectural support for this new computing paradigm, we first characterize the two In-situ AI tasks (i.e. inference and diagnosis tasks) on two popular IoT devices (i.e. mobile GPU and FPGA) and explore the design space and tradeoffs. Based on the characterization results, we propose two working modes for the In-situ AI tasks, including Single-running and Co-running modes. Moreover, we craft analytical models for these two modes to guide the best configuration selection. We also develop a novel two-level weight shared In-situ AI architecture to efficiently deploy In-situ tasks to IoT node. Compared with traditional IoT systems, our In-situ AI can reduce data movement by 28-71%, which further yields 1.4X-3.3X speedup on model update and contributes to 30-70% energy saving.","PeriodicalId":154694,"journal":{"name":"2018 IEEE International Symposium on High Performance Computer Architecture (HPCA)","volume":"262 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"83","resultStr":"{\"title\":\"In-Situ AI: Towards Autonomous and Incremental Deep Learning for IoT Systems\",\"authors\":\"Mingcong Song, Kan Zhong, Jiaqi Zhang, Yang Hu, Duo Liu, Wei-gong Zhang, Jing Wang, Tao Li\",\"doi\":\"10.1109/HPCA.2018.00018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent years have seen an exploration of data volumes from a myriad of IoT devices, such as various sensors and ubiquitous cameras. The deluge of IoT data creates enormous opportunities for us to explore the physical world, especially with the help of deep learning techniques. Traditionally, the Cloud is the option for deploying deep learning based applications. However, the challenges of Cloud-centric IoT systems are increasing due to significant data movement overhead, escalating energy needs, and privacy issues. Rather than constantly moving a tremendous amount of raw data to the Cloud, it would be beneficial to leverage the emerging powerful IoT devices to perform the inference task. Nevertheless, the statically trained model could not efficiently handle the dynamic data in the real in-situ environments, which leads to low accuracy. Moreover, the big raw IoT data challenges the traditional supervised training method in the Cloud. To tackle the above challenges, we propose In-situ AI, the first Autonomous and Incremental computing framework and architecture for deep learning based IoT applications. We equip deep learning based IoT system with autonomous IoT data diagnosis (minimize data movement), and incremental and unsupervised training method (tackle the big raw IoT data generated in ever-changing in-situ environments). To provide efficient architectural support for this new computing paradigm, we first characterize the two In-situ AI tasks (i.e. inference and diagnosis tasks) on two popular IoT devices (i.e. mobile GPU and FPGA) and explore the design space and tradeoffs. Based on the characterization results, we propose two working modes for the In-situ AI tasks, including Single-running and Co-running modes. Moreover, we craft analytical models for these two modes to guide the best configuration selection. We also develop a novel two-level weight shared In-situ AI architecture to efficiently deploy In-situ tasks to IoT node. Compared with traditional IoT systems, our In-situ AI can reduce data movement by 28-71%, which further yields 1.4X-3.3X speedup on model update and contributes to 30-70% energy saving.\",\"PeriodicalId\":154694,\"journal\":{\"name\":\"2018 IEEE International Symposium on High Performance Computer Architecture (HPCA)\",\"volume\":\"262 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"83\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Symposium on High Performance Computer Architecture (HPCA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HPCA.2018.00018\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Symposium on High Performance Computer Architecture (HPCA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HPCA.2018.00018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 83

摘要

近年来,人们对各种物联网设备(如各种传感器和无处不在的摄像头)的数据量进行了探索。海量的物联网数据为我们探索物理世界创造了巨大的机会,尤其是在深度学习技术的帮助下。传统上,云是部署基于深度学习的应用程序的选择。然而,由于大量的数据移动开销、不断升级的能源需求和隐私问题,以云为中心的物联网系统面临的挑战正在增加。与其不断地将大量原始数据移动到云端,不如利用新兴的强大物联网设备来执行推理任务。然而,静态训练的模型不能有效地处理真实现场环境中的动态数据,导致模型精度较低。此外,大的原始物联网数据对传统的云监督训练方法提出了挑战。为了应对上述挑战,我们提出了原位人工智能,这是基于深度学习的物联网应用的第一个自治和增量计算框架和架构。我们为基于深度学习的物联网系统配备自主物联网数据诊断(最大限度地减少数据移动)和增量无监督训练方法(解决在不断变化的原位环境中产生的大量原始物联网数据)。为了为这种新的计算范式提供有效的架构支持,我们首先在两种流行的物联网设备(即移动GPU和FPGA)上描述了两个原位人工智能任务(即推理和诊断任务),并探索了设计空间和权衡。基于表征结果,我们提出了原位人工智能任务的两种工作模式:单运行模式和协同运行模式。此外,我们为这两种模式制作了分析模型,以指导最佳配置选择。我们还开发了一种新的两级权重共享的原位AI架构,以有效地将原位任务部署到物联网节点。与传统的物联网系统相比,我们的原位人工智能可以减少28-71%的数据移动,进一步提高1.4 -3.3倍的模型更新速度,并节省30-70%的能源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
In-Situ AI: Towards Autonomous and Incremental Deep Learning for IoT Systems
Recent years have seen an exploration of data volumes from a myriad of IoT devices, such as various sensors and ubiquitous cameras. The deluge of IoT data creates enormous opportunities for us to explore the physical world, especially with the help of deep learning techniques. Traditionally, the Cloud is the option for deploying deep learning based applications. However, the challenges of Cloud-centric IoT systems are increasing due to significant data movement overhead, escalating energy needs, and privacy issues. Rather than constantly moving a tremendous amount of raw data to the Cloud, it would be beneficial to leverage the emerging powerful IoT devices to perform the inference task. Nevertheless, the statically trained model could not efficiently handle the dynamic data in the real in-situ environments, which leads to low accuracy. Moreover, the big raw IoT data challenges the traditional supervised training method in the Cloud. To tackle the above challenges, we propose In-situ AI, the first Autonomous and Incremental computing framework and architecture for deep learning based IoT applications. We equip deep learning based IoT system with autonomous IoT data diagnosis (minimize data movement), and incremental and unsupervised training method (tackle the big raw IoT data generated in ever-changing in-situ environments). To provide efficient architectural support for this new computing paradigm, we first characterize the two In-situ AI tasks (i.e. inference and diagnosis tasks) on two popular IoT devices (i.e. mobile GPU and FPGA) and explore the design space and tradeoffs. Based on the characterization results, we propose two working modes for the In-situ AI tasks, including Single-running and Co-running modes. Moreover, we craft analytical models for these two modes to guide the best configuration selection. We also develop a novel two-level weight shared In-situ AI architecture to efficiently deploy In-situ tasks to IoT node. Compared with traditional IoT systems, our In-situ AI can reduce data movement by 28-71%, which further yields 1.4X-3.3X speedup on model update and contributes to 30-70% energy saving.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Record-Replay Architecture as a General Security Framework LATTE-CC: Latency Tolerance Aware Adaptive Cache Compression Management for Energy Efficient GPUs Secure DIMM: Moving ORAM Primitives Closer to Memory OuterSPACE: An Outer Product Based Sparse Matrix Multiplication Accelerator WIR: Warp Instruction Reuse to Minimize Repeated Computations in GPUs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1