减少实际功率损失的定制花授粉算法

Dr.Lenin Kanagasabai
{"title":"减少实际功率损失的定制花授粉算法","authors":"Dr.Lenin Kanagasabai","doi":"10.11591/IJICT.V8I2.PP%P","DOIUrl":null,"url":null,"abstract":"In this paper, Tailored Flower Pollination (TFP) algorithm is proposed to solve the optimal reactive power problem. Comprising of the elements of chaos theory, Shuffled frog leaping search and Levy Flight, the performance of the flower pollination algorithm has been improved. Proposed TFP algorithm has been tested in standard IEEE 118 & practical 191 bus test systems and simulation results show clearly the better performance of the proposed algorithm in reducing the real power loss.","PeriodicalId":245958,"journal":{"name":"International Journal of Informatics and Communication Technology (IJ-ICT)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Tailored flower pollination (TFP) algorithm for diminution of real power loss\",\"authors\":\"Dr.Lenin Kanagasabai\",\"doi\":\"10.11591/IJICT.V8I2.PP%P\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, Tailored Flower Pollination (TFP) algorithm is proposed to solve the optimal reactive power problem. Comprising of the elements of chaos theory, Shuffled frog leaping search and Levy Flight, the performance of the flower pollination algorithm has been improved. Proposed TFP algorithm has been tested in standard IEEE 118 & practical 191 bus test systems and simulation results show clearly the better performance of the proposed algorithm in reducing the real power loss.\",\"PeriodicalId\":245958,\"journal\":{\"name\":\"International Journal of Informatics and Communication Technology (IJ-ICT)\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-04-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Informatics and Communication Technology (IJ-ICT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11591/IJICT.V8I2.PP%P\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Informatics and Communication Technology (IJ-ICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11591/IJICT.V8I2.PP%P","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文提出了一种定制花授粉(TFP)算法来解决最优无功问题。结合混沌理论、shuffle青蛙跳跃搜索和Levy飞行理论,提高了传粉算法的性能。本文提出的TFP算法在标准IEEE 118和实用的191总线测试系统上进行了测试,仿真结果表明该算法在降低实际功率损耗方面具有较好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Tailored flower pollination (TFP) algorithm for diminution of real power loss
In this paper, Tailored Flower Pollination (TFP) algorithm is proposed to solve the optimal reactive power problem. Comprising of the elements of chaos theory, Shuffled frog leaping search and Levy Flight, the performance of the flower pollination algorithm has been improved. Proposed TFP algorithm has been tested in standard IEEE 118 & practical 191 bus test systems and simulation results show clearly the better performance of the proposed algorithm in reducing the real power loss.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Review-based analysis of clustering approaches in a recommendation system Adaptive resource allocation in NOMA-enabled backscatter communications systems Navigating the cyber forensics landscape a review of recent innovations ChatGPT's effect on the job market: how automation affects employment in sectors using ChatGPT for customer service Predicting anomalies in computer networks using autoencoder-based representation learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1