吉布斯-兰德模型

Flavio Chierichetti, Ravi Kumar, Silvio Lattanzi
{"title":"吉布斯-兰德模型","authors":"Flavio Chierichetti, Ravi Kumar, Silvio Lattanzi","doi":"10.1145/3517804.3526227","DOIUrl":null,"url":null,"abstract":"Due to its many applications, the clustering ensemble problem has been subject of intense algorithmic study over the last two decades. The input to this problem is a set of clusterings; its goal is to output a clustering that minimizes the average distance to the input clusterings. In this paper, we propose, to the best of our knowledge, the first generative model for this problem. Our Gibbs-like model is parameterized by a center clustering, and by a scale ; the probability of a particular clustering decays exponentially with its scaled Rand distance to the center clustering. For our new model, we give polynomial-time algorithms for sampling, when the center clustering has a constant number of clusters and reconstruction, when the scale parameter is small. En route, we establish several interesting properties of our model. Our work shows that the combinatorial structure of a Gibbs-like model for clusterings is more intricate and challenging than the corresponding and well-studied (Mallows) model for permutations.","PeriodicalId":230606,"journal":{"name":"Proceedings of the 41st ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Gibbs-Rand Model\",\"authors\":\"Flavio Chierichetti, Ravi Kumar, Silvio Lattanzi\",\"doi\":\"10.1145/3517804.3526227\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Due to its many applications, the clustering ensemble problem has been subject of intense algorithmic study over the last two decades. The input to this problem is a set of clusterings; its goal is to output a clustering that minimizes the average distance to the input clusterings. In this paper, we propose, to the best of our knowledge, the first generative model for this problem. Our Gibbs-like model is parameterized by a center clustering, and by a scale ; the probability of a particular clustering decays exponentially with its scaled Rand distance to the center clustering. For our new model, we give polynomial-time algorithms for sampling, when the center clustering has a constant number of clusters and reconstruction, when the scale parameter is small. En route, we establish several interesting properties of our model. Our work shows that the combinatorial structure of a Gibbs-like model for clusterings is more intricate and challenging than the corresponding and well-studied (Mallows) model for permutations.\",\"PeriodicalId\":230606,\"journal\":{\"name\":\"Proceedings of the 41st ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 41st ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3517804.3526227\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 41st ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3517804.3526227","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

由于其广泛的应用,聚类集成问题在过去的二十年里一直是算法研究的主题。这个问题的输入是一组聚类;它的目标是输出一个最小化到输入聚类的平均距离的聚类。在本文中,据我们所知,我们提出了这个问题的第一个生成模型。我们的吉布斯模型由中心聚类和尺度参数化;特定聚类的概率随其到中心聚类的缩放兰德距离呈指数衰减。对于我们的新模型,我们给出了在中心聚类具有恒定簇数和重构时的多项式时间算法,当尺度参数较小时。在此过程中,我们建立了模型的几个有趣的属性。我们的工作表明,吉布斯类聚类模型的组合结构比相应的和研究得很好的排列模型(Mallows)更复杂和更具挑战性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Gibbs-Rand Model
Due to its many applications, the clustering ensemble problem has been subject of intense algorithmic study over the last two decades. The input to this problem is a set of clusterings; its goal is to output a clustering that minimizes the average distance to the input clusterings. In this paper, we propose, to the best of our knowledge, the first generative model for this problem. Our Gibbs-like model is parameterized by a center clustering, and by a scale ; the probability of a particular clustering decays exponentially with its scaled Rand distance to the center clustering. For our new model, we give polynomial-time algorithms for sampling, when the center clustering has a constant number of clusters and reconstruction, when the scale parameter is small. En route, we establish several interesting properties of our model. Our work shows that the combinatorial structure of a Gibbs-like model for clusterings is more intricate and challenging than the corresponding and well-studied (Mallows) model for permutations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Gibbs-Rand Model Optimal Algorithms for Multiway Search on Partial Orders Estimation of the Size of Union of Delphic Sets: Achieving Independence from Stream Size The Complexity of Regular Trail and Simple Path Queries on Undirected Graphs Data Path Queries over Embedded Graph Databases
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1