基于LSTM编解码器结构的Covid-19阿姆哈拉语数据库自然语言接口

Ephrem Tadesse Degu, Rosa Tsegaye Aga
{"title":"基于LSTM编解码器结构的Covid-19阿姆哈拉语数据库自然语言接口","authors":"Ephrem Tadesse Degu, Rosa Tsegaye Aga","doi":"10.1109/ict4da53266.2021.9671268","DOIUrl":null,"url":null,"abstract":"The COVID-19 outbreak is still a challenge in most places because of lack of up-to-date information, primarily, to the people in the world who speak and use underrepresented local languages. Ethiopia is one example of a country where several in-digenous languages are under-represented and under-resourced. Thus, building an interactive interface that responds to users' query using their local language with organized information plays a significant role. In this study, attention-augmented Encoder-Decoder Long Short Term Memory(LSTM) network model has proposed to provide adequate information about the pandemic to the people of Ethiopia by their local language, Amharic. The model converts Amharic COVID-19 related questions into the corresponding structured query language (SQL). The model retrieves information from the Amharic COVID-19 database that has developed for this study. The database contains frequently referenced COVID-19 attributes such as symptoms, prevention, transmission and frequently asked questions. In addition, a parallel Amharic Question-SQL query dataset has been prepared to evaluate the model. The LSTM Network with augmented attention mechanism has shown a clear significant result. In this study, a user interactive interface has also developed. The interface uses the proposed model and provides information about the pandemic to the people with questions in Amharic.","PeriodicalId":371663,"journal":{"name":"2021 International Conference on Information and Communication Technology for Development for Africa (ICT4DA)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Natural Language Interface for Covid-19 Amharic Database Using LSTM Encoder Decoder Architecture with Attention\",\"authors\":\"Ephrem Tadesse Degu, Rosa Tsegaye Aga\",\"doi\":\"10.1109/ict4da53266.2021.9671268\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The COVID-19 outbreak is still a challenge in most places because of lack of up-to-date information, primarily, to the people in the world who speak and use underrepresented local languages. Ethiopia is one example of a country where several in-digenous languages are under-represented and under-resourced. Thus, building an interactive interface that responds to users' query using their local language with organized information plays a significant role. In this study, attention-augmented Encoder-Decoder Long Short Term Memory(LSTM) network model has proposed to provide adequate information about the pandemic to the people of Ethiopia by their local language, Amharic. The model converts Amharic COVID-19 related questions into the corresponding structured query language (SQL). The model retrieves information from the Amharic COVID-19 database that has developed for this study. The database contains frequently referenced COVID-19 attributes such as symptoms, prevention, transmission and frequently asked questions. In addition, a parallel Amharic Question-SQL query dataset has been prepared to evaluate the model. The LSTM Network with augmented attention mechanism has shown a clear significant result. In this study, a user interactive interface has also developed. The interface uses the proposed model and provides information about the pandemic to the people with questions in Amharic.\",\"PeriodicalId\":371663,\"journal\":{\"name\":\"2021 International Conference on Information and Communication Technology for Development for Africa (ICT4DA)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 International Conference on Information and Communication Technology for Development for Africa (ICT4DA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ict4da53266.2021.9671268\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Information and Communication Technology for Development for Africa (ICT4DA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ict4da53266.2021.9671268","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

COVID-19疫情在大多数地方仍然是一项挑战,因为缺乏最新信息,主要是对世界上讲和使用代表性不足的当地语言的人来说。埃塞俄比亚就是一个例子,在这个国家,几种土著语言的代表人数不足,资源不足。因此,构建一个交互界面,使用用户的本地语言和有组织的信息来响应用户的查询,这是一个重要的角色。在这项研究中,注意力增强编码器-解码器长短期记忆(LSTM)网络模型提出通过当地语言阿姆哈拉语向埃塞俄比亚人民提供有关大流行的充分信息。该模型将与COVID-19相关的阿姆哈拉语问题转换为相应的结构化查询语言(SQL)。该模型从为本研究开发的阿姆哈拉语COVID-19数据库中检索信息。该数据库包含经常被引用的COVID-19属性,如症状、预防、传播和常见问题。此外,还准备了一个并行的Amharic Question-SQL查询数据集来评估该模型。具有增强注意机制的LSTM网络已显示出明显的显著效果。在本研究中,还开发了用户交互界面。该界面使用拟议的模型,用阿姆哈拉语向有疑问的人提供有关大流行的信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Natural Language Interface for Covid-19 Amharic Database Using LSTM Encoder Decoder Architecture with Attention
The COVID-19 outbreak is still a challenge in most places because of lack of up-to-date information, primarily, to the people in the world who speak and use underrepresented local languages. Ethiopia is one example of a country where several in-digenous languages are under-represented and under-resourced. Thus, building an interactive interface that responds to users' query using their local language with organized information plays a significant role. In this study, attention-augmented Encoder-Decoder Long Short Term Memory(LSTM) network model has proposed to provide adequate information about the pandemic to the people of Ethiopia by their local language, Amharic. The model converts Amharic COVID-19 related questions into the corresponding structured query language (SQL). The model retrieves information from the Amharic COVID-19 database that has developed for this study. The database contains frequently referenced COVID-19 attributes such as symptoms, prevention, transmission and frequently asked questions. In addition, a parallel Amharic Question-SQL query dataset has been prepared to evaluate the model. The LSTM Network with augmented attention mechanism has shown a clear significant result. In this study, a user interactive interface has also developed. The interface uses the proposed model and provides information about the pandemic to the people with questions in Amharic.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
HSSIW: Hybrid Squirrel Search and Invasive Weed Based Cost-Makespan Task Scheduling for Fog-Cloud Environment Past Event Recall Test for Mitigating Session Hijacking and Cross-Site Request Forgery Classifying Severity Level of Psychiatric Symptoms on Twitter Data Investigate Risk Factors and Predict Neonatal and Infant Mortality Based on Maternal Determinants using Homogenous Ensemble Methods BackIP: Mutation Based Test Data Generation Using Hybrid Approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1