利用超声散射波识别三维物体的神经网络

M. Yoneyama, S. Watanabe, H. Kitagawa, T. Okamoto, T. Morita
{"title":"利用超声散射波识别三维物体的神经网络","authors":"M. Yoneyama, S. Watanabe, H. Kitagawa, T. Okamoto, T. Morita","doi":"10.1109/ULTSYM.1988.49446","DOIUrl":null,"url":null,"abstract":"With the goal of recognizing and faithfully reconstructing objects using ultrasonic waves, the authors devised a system which combines existing acoustic holography with neural networks. The merits of this system is its ability to analyze rather vague ultrasonic waves received by an array of receivers and then to faithfully reconstruct the image. The first step in this research has been the recognition of planar objects.<<ETX>>","PeriodicalId":263198,"journal":{"name":"IEEE 1988 Ultrasonics Symposium Proceedings.","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1988-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Neural network recognizing 3-dimensional object through ultrasonic scattering waves\",\"authors\":\"M. Yoneyama, S. Watanabe, H. Kitagawa, T. Okamoto, T. Morita\",\"doi\":\"10.1109/ULTSYM.1988.49446\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the goal of recognizing and faithfully reconstructing objects using ultrasonic waves, the authors devised a system which combines existing acoustic holography with neural networks. The merits of this system is its ability to analyze rather vague ultrasonic waves received by an array of receivers and then to faithfully reconstruct the image. The first step in this research has been the recognition of planar objects.<<ETX>>\",\"PeriodicalId\":263198,\"journal\":{\"name\":\"IEEE 1988 Ultrasonics Symposium Proceedings.\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1988-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE 1988 Ultrasonics Symposium Proceedings.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ULTSYM.1988.49446\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE 1988 Ultrasonics Symposium Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ULTSYM.1988.49446","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

以超声波识别和真实重建物体为目标,作者设计了一种将现有的声全息技术与神经网络相结合的系统。该系统的优点是能够对一组接收器接收到的相当模糊的超声波进行分析,然后忠实地重建图像。这项研究的第一步是平面物体的识别。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Neural network recognizing 3-dimensional object through ultrasonic scattering waves
With the goal of recognizing and faithfully reconstructing objects using ultrasonic waves, the authors devised a system which combines existing acoustic holography with neural networks. The merits of this system is its ability to analyze rather vague ultrasonic waves received by an array of receivers and then to faithfully reconstruct the image. The first step in this research has been the recognition of planar objects.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Bubble collapse and rebound in a diagnostic ultrasonic field Composite transducer with multiple piezoelectric matching layers Study of SAW pulse compression using 5*5 Barker codes with quadraphase IDT geometries Numerical predictions of surface wave phenomena for ultrasonic NDE Correction of RAC phase response by Langmuir-Blodgett films
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1