利用动态闪蒸和旋流分离器的光热脱盐平台实验研究

A. Thyagarajan, V. Dhir, D. Banerjee
{"title":"利用动态闪蒸和旋流分离器的光热脱盐平台实验研究","authors":"A. Thyagarajan, V. Dhir, D. Banerjee","doi":"10.1115/imece2022-96099","DOIUrl":null,"url":null,"abstract":"\n Commercial thermal desalination plants usually leverage static flash evaporation and vapor separation processes that occur separately in large chambers. Depending on the level of purity — the product can be used for potable water (for human consumption), for agriculture or ranching, or as input for industrial processes (such as in injection wells in oil and gas production operations). Currently, static methods such as Multi Stage Flash (MSF) or Multi Effect Distillation (MED) are widely used (in addition to Reverse Osmosis) for desalination. These static methods occupy large land area (large footprint). This in turn drives up the capital and production costs of the resulting purified water obtained in these techniques.\n Desalination processes that leverage evaporation and vapor separation in the same chamber (dynamically) have smaller form factors which confers lower cost of desalination. Thus, the motivation of our study is to develop a novel apparatus to simultaneously generate vapor by flash evaporation and separate the produced vapor in the same apparatus. The novel apparatus is geared for desalination of sea water, remediation of produced water from process-industries and other sources of saline water (such as brackish water) that are deemed unfit for human consumption. The end goal of the project is to develop a solar-thermal desalination platform by leveraging hot saline water as input from solar ponds.\n In this experimental study, the thermal-hydraulic performance of a prototype (lab-scale) dynamic vapor generation and swirl flow phase separation apparatus is explored for determining the efficacy of this novel concept. Heated water from a constant temperature supply tank (that is comparable to a solar pond in real life) is passed through injection passages into the flow-separation apparatus. As the water flows through the injection passages, vapor bubbles are generated inside the flow passages due to local superheating of the liquid caused by frictional pressure drop. Conversion of liquid into vapor continues as the liquid-vapor mixture flows through the injector ports and eventually the mixture enters a larger separation tube tangentially. Due to the tangential injection of the two-phase mixture, a centrifugal force acts to separate the water and vapor inside the separation tube. The liquid is pushed to the periphery (i.e., the walls) of the separation tube while the vapor forms a stable core at the center. A vapor retrieval tube is then positioned at the center of the vapor core to extract vapor which is then condensed inside the condenser.\n The formation of the vapor core is demonstrated for different operating conditions (supply liquid flow rates) and maximum superheat (temperature difference between supply tank and condenser) ranging between 45–52°C. Based on this study, the optimal operating conditions for maximizing the thermal conversion upstream of the test section are presented.","PeriodicalId":292222,"journal":{"name":"Volume 8: Fluids Engineering; Heat Transfer and Thermal Engineering","volume":"181 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental Investigation of Solar-Thermal Desalination Platform Leveraging Dynamic Flash Evaporation and Swirl Flow Separator\",\"authors\":\"A. Thyagarajan, V. Dhir, D. Banerjee\",\"doi\":\"10.1115/imece2022-96099\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Commercial thermal desalination plants usually leverage static flash evaporation and vapor separation processes that occur separately in large chambers. Depending on the level of purity — the product can be used for potable water (for human consumption), for agriculture or ranching, or as input for industrial processes (such as in injection wells in oil and gas production operations). Currently, static methods such as Multi Stage Flash (MSF) or Multi Effect Distillation (MED) are widely used (in addition to Reverse Osmosis) for desalination. These static methods occupy large land area (large footprint). This in turn drives up the capital and production costs of the resulting purified water obtained in these techniques.\\n Desalination processes that leverage evaporation and vapor separation in the same chamber (dynamically) have smaller form factors which confers lower cost of desalination. Thus, the motivation of our study is to develop a novel apparatus to simultaneously generate vapor by flash evaporation and separate the produced vapor in the same apparatus. The novel apparatus is geared for desalination of sea water, remediation of produced water from process-industries and other sources of saline water (such as brackish water) that are deemed unfit for human consumption. The end goal of the project is to develop a solar-thermal desalination platform by leveraging hot saline water as input from solar ponds.\\n In this experimental study, the thermal-hydraulic performance of a prototype (lab-scale) dynamic vapor generation and swirl flow phase separation apparatus is explored for determining the efficacy of this novel concept. Heated water from a constant temperature supply tank (that is comparable to a solar pond in real life) is passed through injection passages into the flow-separation apparatus. As the water flows through the injection passages, vapor bubbles are generated inside the flow passages due to local superheating of the liquid caused by frictional pressure drop. Conversion of liquid into vapor continues as the liquid-vapor mixture flows through the injector ports and eventually the mixture enters a larger separation tube tangentially. Due to the tangential injection of the two-phase mixture, a centrifugal force acts to separate the water and vapor inside the separation tube. The liquid is pushed to the periphery (i.e., the walls) of the separation tube while the vapor forms a stable core at the center. A vapor retrieval tube is then positioned at the center of the vapor core to extract vapor which is then condensed inside the condenser.\\n The formation of the vapor core is demonstrated for different operating conditions (supply liquid flow rates) and maximum superheat (temperature difference between supply tank and condenser) ranging between 45–52°C. Based on this study, the optimal operating conditions for maximizing the thermal conversion upstream of the test section are presented.\",\"PeriodicalId\":292222,\"journal\":{\"name\":\"Volume 8: Fluids Engineering; Heat Transfer and Thermal Engineering\",\"volume\":\"181 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 8: Fluids Engineering; Heat Transfer and Thermal Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/imece2022-96099\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 8: Fluids Engineering; Heat Transfer and Thermal Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/imece2022-96099","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

商业热脱盐厂通常利用静态闪蒸和蒸汽分离过程,这些过程分别发生在大室中。根据纯度的不同,该产品可用于饮用水(供人类饮用),农业或牧场,或作为工业过程的投入物(如石油和天然气生产作业中的注水井)。目前,除反渗透外,多级闪蒸(MSF)或多效蒸馏(MED)等静态方法被广泛用于海水淡化。这些静态方法占用大量的土地面积(大足迹)。这反过来又推高了这些技术所获得的纯净水的资本和生产成本。利用蒸发和蒸汽分离在同一腔室(动态)的脱盐过程具有较小的外形因素,从而降低了脱盐成本。因此,我们的研究动机是开发一种新型的装置,同时产生蒸汽的闪蒸和分离产生的蒸汽在同一设备。这种新型设备适用于海水淡化、加工工业生产的水和其他被认为不适合人类饮用的咸水(如微咸水)的修复。该项目的最终目标是开发一个太阳能热脱盐平台,利用来自太阳能池的热盐水作为输入。在本实验研究中,探索了一个原型(实验室规模)动态蒸汽产生和漩涡流相分离装置的热工性能,以确定这一新概念的有效性。从恒温供应槽(类似于现实生活中的太阳能池)中加热的水通过注入通道进入流动分离装置。当水流经注射通道时,由于摩擦压降引起液体局部过热,在通道内产生蒸汽泡。当液-气混合物流过喷射器端口时,液体继续转化为蒸汽,最终混合物切向进入更大的分离管。由于两相混合物的切向注入,离心力作用于分离管内的水和蒸汽分离。液体被推到分离管的外围(即壁),而蒸汽在中心形成稳定的核心。然后在蒸汽芯的中心放置蒸汽回收管,以提取蒸汽,然后在冷凝器内冷凝。在45-52°C之间的不同操作条件(供应液流量)和最大过热度(供应罐和冷凝器之间的温差)下,演示了蒸汽芯的形成。在此基础上,提出了使试验段上游热转换最大化的最佳工况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Experimental Investigation of Solar-Thermal Desalination Platform Leveraging Dynamic Flash Evaporation and Swirl Flow Separator
Commercial thermal desalination plants usually leverage static flash evaporation and vapor separation processes that occur separately in large chambers. Depending on the level of purity — the product can be used for potable water (for human consumption), for agriculture or ranching, or as input for industrial processes (such as in injection wells in oil and gas production operations). Currently, static methods such as Multi Stage Flash (MSF) or Multi Effect Distillation (MED) are widely used (in addition to Reverse Osmosis) for desalination. These static methods occupy large land area (large footprint). This in turn drives up the capital and production costs of the resulting purified water obtained in these techniques. Desalination processes that leverage evaporation and vapor separation in the same chamber (dynamically) have smaller form factors which confers lower cost of desalination. Thus, the motivation of our study is to develop a novel apparatus to simultaneously generate vapor by flash evaporation and separate the produced vapor in the same apparatus. The novel apparatus is geared for desalination of sea water, remediation of produced water from process-industries and other sources of saline water (such as brackish water) that are deemed unfit for human consumption. The end goal of the project is to develop a solar-thermal desalination platform by leveraging hot saline water as input from solar ponds. In this experimental study, the thermal-hydraulic performance of a prototype (lab-scale) dynamic vapor generation and swirl flow phase separation apparatus is explored for determining the efficacy of this novel concept. Heated water from a constant temperature supply tank (that is comparable to a solar pond in real life) is passed through injection passages into the flow-separation apparatus. As the water flows through the injection passages, vapor bubbles are generated inside the flow passages due to local superheating of the liquid caused by frictional pressure drop. Conversion of liquid into vapor continues as the liquid-vapor mixture flows through the injector ports and eventually the mixture enters a larger separation tube tangentially. Due to the tangential injection of the two-phase mixture, a centrifugal force acts to separate the water and vapor inside the separation tube. The liquid is pushed to the periphery (i.e., the walls) of the separation tube while the vapor forms a stable core at the center. A vapor retrieval tube is then positioned at the center of the vapor core to extract vapor which is then condensed inside the condenser. The formation of the vapor core is demonstrated for different operating conditions (supply liquid flow rates) and maximum superheat (temperature difference between supply tank and condenser) ranging between 45–52°C. Based on this study, the optimal operating conditions for maximizing the thermal conversion upstream of the test section are presented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Design of an Improved Vertical Spiral Closed Loop Geothermal Heat Exchanger Heat Transfer Characteristics of Particle Flow Through Additively Manufactured (SS 316L) Lattice Frame Material Based on Octet-Shape Topology Experimental Characterization of Surge Cycles in a Centrifugal Compressor Numerical Simulation for Analyzing Interfacial Velocity and Interfacial Forces of a Bubble Motion in Taper Micro Gap Latent Heat Thermal Energy Storage in Shell and Tube With PCM and Metal Foam in LTNE With External Heat Losses
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1