{"title":"基于微泵流控策略的钙钛矿/硅周期微线阵列光电子应用研究","authors":"Xin Bin, I. Roqan","doi":"10.1109/GFP51802.2021.9674012","DOIUrl":null,"url":null,"abstract":"We explore a micro-pump strategy for injecting perovskite materials into Si micro-channels, allowing fabrication of many perovskite micro-wires (MWs) to form inside the regularly-spaced (periodic) Si micro-grooves (~ 1000 MWs/mm). Mask-free laser interference lithography is used to produce periodic Si micro-channels. The SiO2 layer is deposited on the Si array before pumping perovskite to enhance the device performance. We demonstrate a cost-effective zero-waste fabrication method of highly responsive photodetectors based on uniform perovskite MWs/SiO2/Si periodic arrays.","PeriodicalId":158770,"journal":{"name":"2021 IEEE 17th International Conference on Group IV Photonics (GFP)","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fabrication of Perovskite/Si periodic microwire arrays via micro-pump fluidic strategy for optelectronics applications\",\"authors\":\"Xin Bin, I. Roqan\",\"doi\":\"10.1109/GFP51802.2021.9674012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We explore a micro-pump strategy for injecting perovskite materials into Si micro-channels, allowing fabrication of many perovskite micro-wires (MWs) to form inside the regularly-spaced (periodic) Si micro-grooves (~ 1000 MWs/mm). Mask-free laser interference lithography is used to produce periodic Si micro-channels. The SiO2 layer is deposited on the Si array before pumping perovskite to enhance the device performance. We demonstrate a cost-effective zero-waste fabrication method of highly responsive photodetectors based on uniform perovskite MWs/SiO2/Si periodic arrays.\",\"PeriodicalId\":158770,\"journal\":{\"name\":\"2021 IEEE 17th International Conference on Group IV Photonics (GFP)\",\"volume\":\"66 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 17th International Conference on Group IV Photonics (GFP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GFP51802.2021.9674012\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 17th International Conference on Group IV Photonics (GFP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GFP51802.2021.9674012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Fabrication of Perovskite/Si periodic microwire arrays via micro-pump fluidic strategy for optelectronics applications
We explore a micro-pump strategy for injecting perovskite materials into Si micro-channels, allowing fabrication of many perovskite micro-wires (MWs) to form inside the regularly-spaced (periodic) Si micro-grooves (~ 1000 MWs/mm). Mask-free laser interference lithography is used to produce periodic Si micro-channels. The SiO2 layer is deposited on the Si array before pumping perovskite to enhance the device performance. We demonstrate a cost-effective zero-waste fabrication method of highly responsive photodetectors based on uniform perovskite MWs/SiO2/Si periodic arrays.