基于Dempster Shafer组合规则的鲁棒地平估计决策融合

R. Tabib, Ujwala Patil, Syed Altaf Ganihar, N. Trivedi, U. Mudenagudi
{"title":"基于Dempster Shafer组合规则的鲁棒地平估计决策融合","authors":"R. Tabib, Ujwala Patil, Syed Altaf Ganihar, N. Trivedi, U. Mudenagudi","doi":"10.1109/NCVPRIPG.2013.6776247","DOIUrl":null,"url":null,"abstract":"In this paper, we address the problem of decision fusion for robust horizon estimation using Dempster Shafer Combination Rule (DSCR). We provide a framework for decision fusion to select robust horizon estimate out of `n' estimates, based on confidence factor. Vision-based attitude estimation depends on robust horizon estimation and no single algorithm gives accurate results for different kind of scenarios. We propose to combine the evidence parameters to generate confidence factor using DSCR to justify the correctness of the estimated horizon. We compute Confidence Interval (CI) based on Gaussian Mixture Model (GMM). We also propose two techniques to provide evidence parameters for the estimated horizon using CI. We demonstrate the effectiveness of the decision framework on clear and noisy data sets of simulated and real images/videos captured by Micro Air Vehicle (MAV).","PeriodicalId":436402,"journal":{"name":"2013 Fourth National Conference on Computer Vision, Pattern Recognition, Image Processing and Graphics (NCVPRIPG)","volume":"85 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Decision fusion for robust horizon estimation using Dempster Shafer Combination Rule\",\"authors\":\"R. Tabib, Ujwala Patil, Syed Altaf Ganihar, N. Trivedi, U. Mudenagudi\",\"doi\":\"10.1109/NCVPRIPG.2013.6776247\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we address the problem of decision fusion for robust horizon estimation using Dempster Shafer Combination Rule (DSCR). We provide a framework for decision fusion to select robust horizon estimate out of `n' estimates, based on confidence factor. Vision-based attitude estimation depends on robust horizon estimation and no single algorithm gives accurate results for different kind of scenarios. We propose to combine the evidence parameters to generate confidence factor using DSCR to justify the correctness of the estimated horizon. We compute Confidence Interval (CI) based on Gaussian Mixture Model (GMM). We also propose two techniques to provide evidence parameters for the estimated horizon using CI. We demonstrate the effectiveness of the decision framework on clear and noisy data sets of simulated and real images/videos captured by Micro Air Vehicle (MAV).\",\"PeriodicalId\":436402,\"journal\":{\"name\":\"2013 Fourth National Conference on Computer Vision, Pattern Recognition, Image Processing and Graphics (NCVPRIPG)\",\"volume\":\"85 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 Fourth National Conference on Computer Vision, Pattern Recognition, Image Processing and Graphics (NCVPRIPG)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NCVPRIPG.2013.6776247\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Fourth National Conference on Computer Vision, Pattern Recognition, Image Processing and Graphics (NCVPRIPG)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NCVPRIPG.2013.6776247","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

本文利用Dempster Shafer组合规则(DSCR)解决了鲁棒地平估计中的决策融合问题。我们提供了一个决策融合框架,基于置信因子从n个估计中选择稳健的水平估计。基于视觉的姿态估计依赖于鲁棒的水平估计,对于不同的场景,没有一种算法能给出准确的结果。我们建议将证据参数结合使用DSCR来产生置信因子,以证明估计的地平线的正确性。我们基于高斯混合模型计算置信区间(CI)。我们还提出了两种技术来为使用CI估计的层位提供证据参数。我们证明了决策框架在由微型飞行器(MAV)捕获的模拟和真实图像/视频的清晰和嘈杂数据集上的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Decision fusion for robust horizon estimation using Dempster Shafer Combination Rule
In this paper, we address the problem of decision fusion for robust horizon estimation using Dempster Shafer Combination Rule (DSCR). We provide a framework for decision fusion to select robust horizon estimate out of `n' estimates, based on confidence factor. Vision-based attitude estimation depends on robust horizon estimation and no single algorithm gives accurate results for different kind of scenarios. We propose to combine the evidence parameters to generate confidence factor using DSCR to justify the correctness of the estimated horizon. We compute Confidence Interval (CI) based on Gaussian Mixture Model (GMM). We also propose two techniques to provide evidence parameters for the estimated horizon using CI. We demonstrate the effectiveness of the decision framework on clear and noisy data sets of simulated and real images/videos captured by Micro Air Vehicle (MAV).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Image deblurring in super-resolution framework Surface fitting in SPECT imaging useful for detecting Parkinson's Disease and Scans Without Evidence of Dopaminergic Deficit Automatic number plate recognition system using modified stroke width transform UKF based multi-component phase estimation in digital holographic Moiré Feature preserving anisotropic diffusion for image restoration
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1