综合服务多用户MISO系统的鲁棒人工噪声辅助传输设计

Weidong Mei, Zhi Chen, Lingxiang Li, Jun Fang, Shaoqian Li
{"title":"综合服务多用户MISO系统的鲁棒人工噪声辅助传输设计","authors":"Weidong Mei, Zhi Chen, Lingxiang Li, Jun Fang, Shaoqian Li","doi":"10.1109/TVT.2017.2676244","DOIUrl":null,"url":null,"abstract":"This paper considers an optimal artificial noise (AN)-aided transmit design for multi-user MISO systems in the eyes of service integration. Specifically, two sorts of services are combined and served simultaneously: one multicast message intended for all receivers and one confidential message intended for only one receiver. The confidential message is kept perfectly secure from all the unauthorized receivers. This paper considers a general case of imperfect channel state information (CSI), aiming at a joint and robust design of the input covariances for the multicast message, confidential message and AN, such that the worst-case secrecy rate region is maximized subject to the sum power constraint. To this end, we reveal its hidden convexity and transform the original worst-case robust secrecy rate maximization (SRM) problem into a sequence of semidefinite programming. Numerical results are presented to show the efficacy of our proposed method.","PeriodicalId":165321,"journal":{"name":"2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Robust artificial-noise aided transmit design for multi-user MISO systems with integrated services\",\"authors\":\"Weidong Mei, Zhi Chen, Lingxiang Li, Jun Fang, Shaoqian Li\",\"doi\":\"10.1109/TVT.2017.2676244\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper considers an optimal artificial noise (AN)-aided transmit design for multi-user MISO systems in the eyes of service integration. Specifically, two sorts of services are combined and served simultaneously: one multicast message intended for all receivers and one confidential message intended for only one receiver. The confidential message is kept perfectly secure from all the unauthorized receivers. This paper considers a general case of imperfect channel state information (CSI), aiming at a joint and robust design of the input covariances for the multicast message, confidential message and AN, such that the worst-case secrecy rate region is maximized subject to the sum power constraint. To this end, we reveal its hidden convexity and transform the original worst-case robust secrecy rate maximization (SRM) problem into a sequence of semidefinite programming. Numerical results are presented to show the efficacy of our proposed method.\",\"PeriodicalId\":165321,\"journal\":{\"name\":\"2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TVT.2017.2676244\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TVT.2017.2676244","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

从业务集成的角度考虑了多用户MISO系统的最佳人工噪声辅助传输设计。具体来说,两种类型的服务被组合并同时提供:一个面向所有接收者的多播消息和一个仅面向一个接收者的机密消息。机密信息是绝对安全的,不会被未经授权的人接收。本文考虑不完全信道状态信息(CSI)的一般情况,旨在联合鲁棒设计组播消息、保密消息和AN的输入协方差,使最坏保密率区域在和功率约束下最大化。为此,我们揭示了其隐藏的凸性,并将原来的最坏情况鲁棒保密率最大化问题转化为一个半定规划序列。数值结果表明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Robust artificial-noise aided transmit design for multi-user MISO systems with integrated services
This paper considers an optimal artificial noise (AN)-aided transmit design for multi-user MISO systems in the eyes of service integration. Specifically, two sorts of services are combined and served simultaneously: one multicast message intended for all receivers and one confidential message intended for only one receiver. The confidential message is kept perfectly secure from all the unauthorized receivers. This paper considers a general case of imperfect channel state information (CSI), aiming at a joint and robust design of the input covariances for the multicast message, confidential message and AN, such that the worst-case secrecy rate region is maximized subject to the sum power constraint. To this end, we reveal its hidden convexity and transform the original worst-case robust secrecy rate maximization (SRM) problem into a sequence of semidefinite programming. Numerical results are presented to show the efficacy of our proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Self-stabilized deep neural network An acoustic keystroke transient canceler for speech communication terminals using a semi-blind adaptive filter model Data sketching for large-scale Kalman filtering Improved decoding of analog modulo block codes for noise mitigation An expectation-maximization eigenvector clustering approach to direction of arrival estimation of multiple speech sources
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1