Xiao-Xin Li, D. Dai, Xiao-Fei Zhang, Chuan-Xian Ren
{"title":"基于部分迭代重加权稀疏编码的连续遮挡人脸识别","authors":"Xiao-Xin Li, D. Dai, Xiao-Fei Zhang, Chuan-Xian Ren","doi":"10.1109/ACPR.2011.6166617","DOIUrl":null,"url":null,"abstract":"Partially occluded faces are common in automatic face recognition in the real world. Existing methods, such as sparse error correction with Markov random fields, correntropy-based sparse representation and robust sparse coding, are all based on error correction, which relies on the perfect reconstruction of the occluded facial image and limits their recognition rates especially when the occluded regions are large. It helps to enhance recognition rates if we can detect the occluded portions and exclude them from further classification. Based on a magnitude order measure, we propose an innovative effective occlusion detection algorithm, called Partially Iteratively Reweighted Sparse Coding (PIRSC). Compared to the state-of-the-art methods, our PIRSC based classifier greatly improve the face recognition rate especially when the occlusion percentage is large.","PeriodicalId":287232,"journal":{"name":"The First Asian Conference on Pattern Recognition","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Face recognition with continuous occlusion using partially iteratively reweighted sparse coding\",\"authors\":\"Xiao-Xin Li, D. Dai, Xiao-Fei Zhang, Chuan-Xian Ren\",\"doi\":\"10.1109/ACPR.2011.6166617\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Partially occluded faces are common in automatic face recognition in the real world. Existing methods, such as sparse error correction with Markov random fields, correntropy-based sparse representation and robust sparse coding, are all based on error correction, which relies on the perfect reconstruction of the occluded facial image and limits their recognition rates especially when the occluded regions are large. It helps to enhance recognition rates if we can detect the occluded portions and exclude them from further classification. Based on a magnitude order measure, we propose an innovative effective occlusion detection algorithm, called Partially Iteratively Reweighted Sparse Coding (PIRSC). Compared to the state-of-the-art methods, our PIRSC based classifier greatly improve the face recognition rate especially when the occlusion percentage is large.\",\"PeriodicalId\":287232,\"journal\":{\"name\":\"The First Asian Conference on Pattern Recognition\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The First Asian Conference on Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACPR.2011.6166617\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The First Asian Conference on Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACPR.2011.6166617","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Face recognition with continuous occlusion using partially iteratively reweighted sparse coding
Partially occluded faces are common in automatic face recognition in the real world. Existing methods, such as sparse error correction with Markov random fields, correntropy-based sparse representation and robust sparse coding, are all based on error correction, which relies on the perfect reconstruction of the occluded facial image and limits their recognition rates especially when the occluded regions are large. It helps to enhance recognition rates if we can detect the occluded portions and exclude them from further classification. Based on a magnitude order measure, we propose an innovative effective occlusion detection algorithm, called Partially Iteratively Reweighted Sparse Coding (PIRSC). Compared to the state-of-the-art methods, our PIRSC based classifier greatly improve the face recognition rate especially when the occlusion percentage is large.