基于lbph的视障人士人脸识别系统的开发

Md. Golam Mahabub Sarwar, Ashim Dey, Annesha Das
{"title":"基于lbph的视障人士人脸识别系统的开发","authors":"Md. Golam Mahabub Sarwar, Ashim Dey, Annesha Das","doi":"10.1109/CAIDA51941.2021.9425275","DOIUrl":null,"url":null,"abstract":"A large number of people around the world are suffering from visual impairment which is a global health issue. These visually challenged people face a great deal of difficulties in carrying out their day-to-day activities. Recognizing a person is one of the major problems faced by them. This document represents a face recognition system with auditory output which can be beneficial for visually challenged people in recognizing known and unknown persons. Proposed face recognition system is comprised of three main modules including dataset creation, dataset training, and face recognition. Here, Haar Cascade Classifier is used to detect face from a live video stream and then Local Binary Pattern Histogram (LBPH) algorithm is applied to create the recognizer for face recognition using OpenCV-Python library. This system can detect and recognize multiple people and is also capable of recognizing from both front and side face. The overall face recognition accuracy is about 93%. Apart from visually challenged people, old people with Alzheimer’s disease can also be benefited using this system.","PeriodicalId":272573,"journal":{"name":"2021 1st International Conference on Artificial Intelligence and Data Analytics (CAIDA)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Developing a LBPH-based Face Recognition System for Visually Impaired People\",\"authors\":\"Md. Golam Mahabub Sarwar, Ashim Dey, Annesha Das\",\"doi\":\"10.1109/CAIDA51941.2021.9425275\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A large number of people around the world are suffering from visual impairment which is a global health issue. These visually challenged people face a great deal of difficulties in carrying out their day-to-day activities. Recognizing a person is one of the major problems faced by them. This document represents a face recognition system with auditory output which can be beneficial for visually challenged people in recognizing known and unknown persons. Proposed face recognition system is comprised of three main modules including dataset creation, dataset training, and face recognition. Here, Haar Cascade Classifier is used to detect face from a live video stream and then Local Binary Pattern Histogram (LBPH) algorithm is applied to create the recognizer for face recognition using OpenCV-Python library. This system can detect and recognize multiple people and is also capable of recognizing from both front and side face. The overall face recognition accuracy is about 93%. Apart from visually challenged people, old people with Alzheimer’s disease can also be benefited using this system.\",\"PeriodicalId\":272573,\"journal\":{\"name\":\"2021 1st International Conference on Artificial Intelligence and Data Analytics (CAIDA)\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 1st International Conference on Artificial Intelligence and Data Analytics (CAIDA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CAIDA51941.2021.9425275\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 1st International Conference on Artificial Intelligence and Data Analytics (CAIDA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CAIDA51941.2021.9425275","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

世界上有很多人患有视力障碍,这是一个全球性的健康问题。这些视力有问题的人在进行日常活动时面临很多困难。识别一个人是他们面临的主要问题之一。本文档描述了一个具有听觉输出的人脸识别系统,它可以帮助视障人士识别已知和未知的人。本文提出的人脸识别系统由数据集创建、数据集训练和人脸识别三个主要模块组成。在这里,使用Haar级联分类器从实时视频流中检测人脸,然后使用OpenCV-Python库使用局部二值模式直方图(Local Binary Pattern Histogram, LBPH)算法创建人脸识别器。该系统可以对多人进行检测和识别,也可以从正面和侧面进行识别。整体人脸识别准确率约为93%。除了视力障碍的人,患有阿尔茨海默病的老年人也可以使用该系统受益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Developing a LBPH-based Face Recognition System for Visually Impaired People
A large number of people around the world are suffering from visual impairment which is a global health issue. These visually challenged people face a great deal of difficulties in carrying out their day-to-day activities. Recognizing a person is one of the major problems faced by them. This document represents a face recognition system with auditory output which can be beneficial for visually challenged people in recognizing known and unknown persons. Proposed face recognition system is comprised of three main modules including dataset creation, dataset training, and face recognition. Here, Haar Cascade Classifier is used to detect face from a live video stream and then Local Binary Pattern Histogram (LBPH) algorithm is applied to create the recognizer for face recognition using OpenCV-Python library. This system can detect and recognize multiple people and is also capable of recognizing from both front and side face. The overall face recognition accuracy is about 93%. Apart from visually challenged people, old people with Alzheimer’s disease can also be benefited using this system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Melanoma Skin Lesions Classification using Deep Convolutional Neural Network with Transfer Learning A Comparison of Two-Stage Classifier Algorithm with Ensemble Techniques On Detection of Diabetic Retinopathy Predicting Congestive Heart Failure Risk Factors in King Abdulaziz Medical City A Machine Learning Approach Robotics: Biological Hypercomputation and Bio-Inspired Swarms Intelligence AI Support Marketing: Understanding the Customer Journey towards the Business Development
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1