Na-young Kim, Jung Kyung Lee, C. Yoo, Seunghyun Cho, Jewon Kang
{"title":"用于长期视频插值的视频生成与合成网络","authors":"Na-young Kim, Jung Kyung Lee, C. Yoo, Seunghyun Cho, Jewon Kang","doi":"10.23919/APSIPA.2018.8659743","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a bidirectional synthesis video interpolation technique based on deep learning, using a forward and a backward video generation network and a synthesis network. The forward generation network first extrapolates a video sequence, given the past video frames, and then the backward generation network generates the same video sequence, given the future video frames. Next, a synthesis network fuses the results of the two generation networks to create an intermediate video sequence. To jointly train the video generation and synthesis networks, we define a cost function to approximate the visual quality and the motion of the interpolated video as close as possible to those of the original video. Experimental results show that the proposed technique outperforms the state-of-the art long-term video interpolation model based on deep learning.","PeriodicalId":287799,"journal":{"name":"2018 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC)","volume":"86 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Video Generation and Synthesis Network for Long-term Video Interpolation\",\"authors\":\"Na-young Kim, Jung Kyung Lee, C. Yoo, Seunghyun Cho, Jewon Kang\",\"doi\":\"10.23919/APSIPA.2018.8659743\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a bidirectional synthesis video interpolation technique based on deep learning, using a forward and a backward video generation network and a synthesis network. The forward generation network first extrapolates a video sequence, given the past video frames, and then the backward generation network generates the same video sequence, given the future video frames. Next, a synthesis network fuses the results of the two generation networks to create an intermediate video sequence. To jointly train the video generation and synthesis networks, we define a cost function to approximate the visual quality and the motion of the interpolated video as close as possible to those of the original video. Experimental results show that the proposed technique outperforms the state-of-the art long-term video interpolation model based on deep learning.\",\"PeriodicalId\":287799,\"journal\":{\"name\":\"2018 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC)\",\"volume\":\"86 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/APSIPA.2018.8659743\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/APSIPA.2018.8659743","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Video Generation and Synthesis Network for Long-term Video Interpolation
In this paper, we propose a bidirectional synthesis video interpolation technique based on deep learning, using a forward and a backward video generation network and a synthesis network. The forward generation network first extrapolates a video sequence, given the past video frames, and then the backward generation network generates the same video sequence, given the future video frames. Next, a synthesis network fuses the results of the two generation networks to create an intermediate video sequence. To jointly train the video generation and synthesis networks, we define a cost function to approximate the visual quality and the motion of the interpolated video as close as possible to those of the original video. Experimental results show that the proposed technique outperforms the state-of-the art long-term video interpolation model based on deep learning.