用谱图理论推断多尺度马尔可夫过程的结构

C. Ho, P. Parpas
{"title":"用谱图理论推断多尺度马尔可夫过程的结构","authors":"C. Ho, P. Parpas","doi":"10.1137/1.9781611974072.32","DOIUrl":null,"url":null,"abstract":"Multiscale Markov processes are used to model and control stochastic dynamics across different scales in many applications areas such as electrical engineering, finance, and material science. A commonly used mathematical representation that captures multiscale stochastic dynamics is that of singularly perturbed Markov processes. Dimensionality reductions techniques for this class of stochastic optimal control problems have been studied for many years. However, it is typically assumed that the structure of perturbed process and its dynamics are known. In this paper, we show how to infer the structure of a singularly perturbed Markov process from data. We propose a measure of similarity for the different states of the Markov process and then use techniques from spectral graph theory to show that the perturbed structure can be obtained by looking at the spectrum of a graph defined on the proposed similarity matrix.","PeriodicalId":193106,"journal":{"name":"SIAM Conf. on Control and its Applications","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Using Spectral Graph Theory to Infer the Structure of Multiscale Markov Processes\",\"authors\":\"C. Ho, P. Parpas\",\"doi\":\"10.1137/1.9781611974072.32\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multiscale Markov processes are used to model and control stochastic dynamics across different scales in many applications areas such as electrical engineering, finance, and material science. A commonly used mathematical representation that captures multiscale stochastic dynamics is that of singularly perturbed Markov processes. Dimensionality reductions techniques for this class of stochastic optimal control problems have been studied for many years. However, it is typically assumed that the structure of perturbed process and its dynamics are known. In this paper, we show how to infer the structure of a singularly perturbed Markov process from data. We propose a measure of similarity for the different states of the Markov process and then use techniques from spectral graph theory to show that the perturbed structure can be obtained by looking at the spectrum of a graph defined on the proposed similarity matrix.\",\"PeriodicalId\":193106,\"journal\":{\"name\":\"SIAM Conf. on Control and its Applications\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM Conf. on Control and its Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1137/1.9781611974072.32\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Conf. on Control and its Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/1.9781611974072.32","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

多尺度马尔可夫过程在电气工程、金融和材料科学等许多应用领域中用于模拟和控制不同尺度的随机动力学。捕获多尺度随机动力学的常用数学表示是奇摄动马尔可夫过程。这类随机最优控制问题的降维技术已经研究了很多年。然而,通常假设摄动过程的结构和动力学是已知的。本文给出了如何从数据中推断奇异摄动马尔可夫过程的结构。我们为马尔可夫过程的不同状态提出了一种相似度度量,然后利用谱图理论的技术表明,通过观察在所提出的相似矩阵上定义的图的谱,可以获得摄动结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
On Using Spectral Graph Theory to Infer the Structure of Multiscale Markov Processes
Multiscale Markov processes are used to model and control stochastic dynamics across different scales in many applications areas such as electrical engineering, finance, and material science. A commonly used mathematical representation that captures multiscale stochastic dynamics is that of singularly perturbed Markov processes. Dimensionality reductions techniques for this class of stochastic optimal control problems have been studied for many years. However, it is typically assumed that the structure of perturbed process and its dynamics are known. In this paper, we show how to infer the structure of a singularly perturbed Markov process from data. We propose a measure of similarity for the different states of the Markov process and then use techniques from spectral graph theory to show that the perturbed structure can be obtained by looking at the spectrum of a graph defined on the proposed similarity matrix.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Towards a minimum L2-norm exact control of the Pauli equation Diffusive Realization of a Lyapunov Equation Solution, and Parallel Algorithms Implementation A Variable Reference Trajectory for Model-Free Glycemia Regulation Metzler Matrix Transform Determination using a Nonsmooth Optimization Technique with an Application to Interval Observers Identification of the Fragmentation Role in the Amyloid Assembling Processes and Application to their Optimization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1