基于层次话语结构的评论情感分析

Fei Wang, Yunfang Wu
{"title":"基于层次话语结构的评论情感分析","authors":"Fei Wang, Yunfang Wu","doi":"10.1109/IALP.2013.42","DOIUrl":null,"url":null,"abstract":"The overall sentiment of a text is critically affected by its discourse structure. For the first time, this paper incorporates hierarchical discourse structure into an unsupervised sentiment analysis framework. Experimental results show that by integrating discourse structure, the performance of sentiment analysis is improved by 1.9% (from 85.1% to 87.0%), demonstrating the effectiveness of exploiting discourse structure for sentiment analysis.","PeriodicalId":413833,"journal":{"name":"2013 International Conference on Asian Language Processing","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Exploiting Hierarchical Discourse Structure for Review Sentiment Analysis\",\"authors\":\"Fei Wang, Yunfang Wu\",\"doi\":\"10.1109/IALP.2013.42\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The overall sentiment of a text is critically affected by its discourse structure. For the first time, this paper incorporates hierarchical discourse structure into an unsupervised sentiment analysis framework. Experimental results show that by integrating discourse structure, the performance of sentiment analysis is improved by 1.9% (from 85.1% to 87.0%), demonstrating the effectiveness of exploiting discourse structure for sentiment analysis.\",\"PeriodicalId\":413833,\"journal\":{\"name\":\"2013 International Conference on Asian Language Processing\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 International Conference on Asian Language Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IALP.2013.42\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Conference on Asian Language Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IALP.2013.42","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

话语结构对文本的整体情感有重要影响。本文首次将分层话语结构融入到无监督情感分析框架中。实验结果表明,通过整合话语结构,情感分析的性能提高了1.9%(从85.1%提高到87.0%),证明了利用话语结构进行情感分析的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Exploiting Hierarchical Discourse Structure for Review Sentiment Analysis
The overall sentiment of a text is critically affected by its discourse structure. For the first time, this paper incorporates hierarchical discourse structure into an unsupervised sentiment analysis framework. Experimental results show that by integrating discourse structure, the performance of sentiment analysis is improved by 1.9% (from 85.1% to 87.0%), demonstrating the effectiveness of exploiting discourse structure for sentiment analysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Judgment, Extraction and Selective Restriction of Chinese Eventive Verb Categorization and Identification of Fragments with Shi Plus Punctuation Feature Abstraction for Lightweight and Accurate Chinese Word Segmentation The Comparative Research on the Segmentation Strategies of Tibetan Bounded-Variant Forms An Empirical Evaluation of Dimensionality Reduction Using Latent Semantic Analysis on Hindi Text
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1