{"title":"自稳定深度神经网络","authors":"Pegah Ghahremani, J. Droppo","doi":"10.1109/ICASSP.2016.7472719","DOIUrl":null,"url":null,"abstract":"Deep neural network models have been successfully applied to many tasks such as image labeling and speech recognition. Mini-batch stochastic gradient descent is the most prevalent method for training these models. A critical part of successfully applying this method is choosing appropriate initial values, as well as local and global learning rate scheduling algorithms. In this paper, we present a method which is less sensitive to choice of initial values, works better than popular learning rate adjustment algorithms, and speeds convergence on model parameters. We show that using the Self-stabilized DNN method, we no longer require initial learning rate tuning and training converges quickly with a fixed global learning rate. The proposed method provides promising results over conventional DNN structure with better convergence rate.","PeriodicalId":165321,"journal":{"name":"2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Self-stabilized deep neural network\",\"authors\":\"Pegah Ghahremani, J. Droppo\",\"doi\":\"10.1109/ICASSP.2016.7472719\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deep neural network models have been successfully applied to many tasks such as image labeling and speech recognition. Mini-batch stochastic gradient descent is the most prevalent method for training these models. A critical part of successfully applying this method is choosing appropriate initial values, as well as local and global learning rate scheduling algorithms. In this paper, we present a method which is less sensitive to choice of initial values, works better than popular learning rate adjustment algorithms, and speeds convergence on model parameters. We show that using the Self-stabilized DNN method, we no longer require initial learning rate tuning and training converges quickly with a fixed global learning rate. The proposed method provides promising results over conventional DNN structure with better convergence rate.\",\"PeriodicalId\":165321,\"journal\":{\"name\":\"2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP.2016.7472719\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2016.7472719","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Deep neural network models have been successfully applied to many tasks such as image labeling and speech recognition. Mini-batch stochastic gradient descent is the most prevalent method for training these models. A critical part of successfully applying this method is choosing appropriate initial values, as well as local and global learning rate scheduling algorithms. In this paper, we present a method which is less sensitive to choice of initial values, works better than popular learning rate adjustment algorithms, and speeds convergence on model parameters. We show that using the Self-stabilized DNN method, we no longer require initial learning rate tuning and training converges quickly with a fixed global learning rate. The proposed method provides promising results over conventional DNN structure with better convergence rate.