人口统计学偏差在深度人脸识别研究中的危害

R. Vicente-Garcia, Lukasz Wandzik, Louisa Grabner, J. Krüger
{"title":"人口统计学偏差在深度人脸识别研究中的危害","authors":"R. Vicente-Garcia, Lukasz Wandzik, Louisa Grabner, J. Krüger","doi":"10.1109/ICB45273.2019.8987334","DOIUrl":null,"url":null,"abstract":"In this work we demonstrate the existence of demographic bias in the face representations of currently popular deep-learning-based face recognition models, exposing a bad research and development practice that may lead to a systematic discrimination of certain demographic groups in critical scenarios like automated border control. Furthermore, through the simulation of the template morphing attack, we reveal significant security risks that derive from demographic bias in current deep face models. This widely ignored problem poses important questions on fairness and accountability in face recognition.","PeriodicalId":430846,"journal":{"name":"2019 International Conference on Biometrics (ICB)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":"{\"title\":\"The Harms of Demographic Bias in Deep Face Recognition Research\",\"authors\":\"R. Vicente-Garcia, Lukasz Wandzik, Louisa Grabner, J. Krüger\",\"doi\":\"10.1109/ICB45273.2019.8987334\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work we demonstrate the existence of demographic bias in the face representations of currently popular deep-learning-based face recognition models, exposing a bad research and development practice that may lead to a systematic discrimination of certain demographic groups in critical scenarios like automated border control. Furthermore, through the simulation of the template morphing attack, we reveal significant security risks that derive from demographic bias in current deep face models. This widely ignored problem poses important questions on fairness and accountability in face recognition.\",\"PeriodicalId\":430846,\"journal\":{\"name\":\"2019 International Conference on Biometrics (ICB)\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"28\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on Biometrics (ICB)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICB45273.2019.8987334\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Biometrics (ICB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICB45273.2019.8987334","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28

摘要

在这项工作中,我们证明了目前流行的基于深度学习的人脸识别模型的人脸表示中存在人口统计学偏差,暴露了一种糟糕的研究和开发实践,可能导致在自动边境控制等关键场景中对某些人口统计学群体的系统性歧视。此外,通过对模板变形攻击的模拟,我们揭示了当前深度人脸模型中由于人口统计偏差而产生的重大安全风险。这个被广泛忽视的问题对人脸识别的公平性和问责制提出了重要的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Harms of Demographic Bias in Deep Face Recognition Research
In this work we demonstrate the existence of demographic bias in the face representations of currently popular deep-learning-based face recognition models, exposing a bad research and development practice that may lead to a systematic discrimination of certain demographic groups in critical scenarios like automated border control. Furthermore, through the simulation of the template morphing attack, we reveal significant security risks that derive from demographic bias in current deep face models. This widely ignored problem poses important questions on fairness and accountability in face recognition.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
PPG2Live: Using dual PPG for active authentication and liveness detection A New Approach for EEG-Based Biometric Authentication Using Auditory Stimulation A novel scheme to address the fusion uncertainty in multi-modal continuous authentication schemes on mobile devices Sclera Segmentation Benchmarking Competition in Cross-resolution Environment Fingerprint Presentation Attack Detection utilizing Time-Series, Color Fingerprint Captures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1