{"title":"基于周期的乘用车巡航控制优化油耗","authors":"S. Li, Shaobing Xu, Guofa Li, B. Cheng","doi":"10.1109/IVS.2014.6856424","DOIUrl":null,"url":null,"abstract":"Eco-driving technologies are able to largely reduce the fuel consumption of ground vehicles. This paper presents how to determine the fuel-optimized operating strategies of passenger cars under cruising process. The design naturally casts into an optimal control problem with the S-shaped engine fueling rate as the integrand of cost function. The solutions are numerically solved by the Legendre pseudospectral method, of which many are found to demonstrate periodic behaviors. In the periodic operation, the engine switches between the minimum brake specific fuel consumption (BSFC) point and the idling point, while the vehicle speed oscillates between its upper and lower bounds. The formation of periodic operation are analyzed and explained by the π-test theory and steady state analysis method.","PeriodicalId":254500,"journal":{"name":"2014 IEEE Intelligent Vehicles Symposium Proceedings","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Periodicity based cruising control of passenger cars for optimized fuel consumption\",\"authors\":\"S. Li, Shaobing Xu, Guofa Li, B. Cheng\",\"doi\":\"10.1109/IVS.2014.6856424\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Eco-driving technologies are able to largely reduce the fuel consumption of ground vehicles. This paper presents how to determine the fuel-optimized operating strategies of passenger cars under cruising process. The design naturally casts into an optimal control problem with the S-shaped engine fueling rate as the integrand of cost function. The solutions are numerically solved by the Legendre pseudospectral method, of which many are found to demonstrate periodic behaviors. In the periodic operation, the engine switches between the minimum brake specific fuel consumption (BSFC) point and the idling point, while the vehicle speed oscillates between its upper and lower bounds. The formation of periodic operation are analyzed and explained by the π-test theory and steady state analysis method.\",\"PeriodicalId\":254500,\"journal\":{\"name\":\"2014 IEEE Intelligent Vehicles Symposium Proceedings\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE Intelligent Vehicles Symposium Proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IVS.2014.6856424\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Intelligent Vehicles Symposium Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IVS.2014.6856424","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Periodicity based cruising control of passenger cars for optimized fuel consumption
Eco-driving technologies are able to largely reduce the fuel consumption of ground vehicles. This paper presents how to determine the fuel-optimized operating strategies of passenger cars under cruising process. The design naturally casts into an optimal control problem with the S-shaped engine fueling rate as the integrand of cost function. The solutions are numerically solved by the Legendre pseudospectral method, of which many are found to demonstrate periodic behaviors. In the periodic operation, the engine switches between the minimum brake specific fuel consumption (BSFC) point and the idling point, while the vehicle speed oscillates between its upper and lower bounds. The formation of periodic operation are analyzed and explained by the π-test theory and steady state analysis method.