使用压缩和PSO的垃圾邮件检测

Michal Prilepok, T. Ježowicz, J. Platoš, V. Snás̃el
{"title":"使用压缩和PSO的垃圾邮件检测","authors":"Michal Prilepok, T. Ježowicz, J. Platoš, V. Snás̃el","doi":"10.1109/CASoN.2012.6412413","DOIUrl":null,"url":null,"abstract":"The problem of spam emails is still growing. Therefore, developing of algorithms which are able to solve this problem is also very active area. This paper presents two different algorithms for spam detection. The first algorithm is based on Bayesian filter, but it is improved using data compression algorithms in case that the Bayesian filter cannot decide. The second algorithm is based on document classification algorithm using Particle Swarm Optimization. Results of presented algorithms are promising.","PeriodicalId":431370,"journal":{"name":"2012 Fourth International Conference on Computational Aspects of Social Networks (CASoN)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Spam detection using compression and PSO\",\"authors\":\"Michal Prilepok, T. Ježowicz, J. Platoš, V. Snás̃el\",\"doi\":\"10.1109/CASoN.2012.6412413\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The problem of spam emails is still growing. Therefore, developing of algorithms which are able to solve this problem is also very active area. This paper presents two different algorithms for spam detection. The first algorithm is based on Bayesian filter, but it is improved using data compression algorithms in case that the Bayesian filter cannot decide. The second algorithm is based on document classification algorithm using Particle Swarm Optimization. Results of presented algorithms are promising.\",\"PeriodicalId\":431370,\"journal\":{\"name\":\"2012 Fourth International Conference on Computational Aspects of Social Networks (CASoN)\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 Fourth International Conference on Computational Aspects of Social Networks (CASoN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CASoN.2012.6412413\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Fourth International Conference on Computational Aspects of Social Networks (CASoN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CASoN.2012.6412413","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

垃圾邮件的问题仍在增长。因此,开发能够解决这一问题的算法也是一个非常活跃的领域。本文提出了两种不同的垃圾邮件检测算法。第一种算法是基于贝叶斯滤波的,但在贝叶斯滤波不能确定的情况下,使用数据压缩算法进行改进。第二种算法是基于粒子群算法的文档分类算法。所提出的算法的结果是有希望的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Spam detection using compression and PSO
The problem of spam emails is still growing. Therefore, developing of algorithms which are able to solve this problem is also very active area. This paper presents two different algorithms for spam detection. The first algorithm is based on Bayesian filter, but it is improved using data compression algorithms in case that the Bayesian filter cannot decide. The second algorithm is based on document classification algorithm using Particle Swarm Optimization. Results of presented algorithms are promising.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Boosting Optimum-Path Forest clustering through harmony Search and its applications for intrusion detection in computer networks Graph-based cross-validated committees ensembles Automatic sentiment analysis of Twitter messages Identifying focal patterns in social networks Ontology-based Negotiation of security requirements in cloud
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1