基于stokes矢量相关的冰川表面速度估计

A. Muhuri, A. Bhattacharya, R. Natsuaki, A. Hirose
{"title":"基于stokes矢量相关的冰川表面速度估计","authors":"A. Muhuri, A. Bhattacharya, R. Natsuaki, A. Hirose","doi":"10.1109/APSAR.2015.7306281","DOIUrl":null,"url":null,"abstract":"Cryosphere plays a crucial role in regulating local and global climate. Glaciers form an important component of this frozen part of the Earth's system. They exist over a prolonged period and are largest reservoir of freshwater on Earth. The meltwater from the glaciers during warmer seasons contribute to the river systems in absence of other sources. The run-off is also useful for agriculture, power generation, and is rich in alluvium. Retreating glaciers gives rise to pro-glacial lakes formed by damming action of moraine or ice. Rupturing of ice dams have caused serious damage to infrastructure and human lives in the past. Such useful and dynamic characteristics of a glacier motivate us to study its movement. Monitoring glaciers through in-situ field measurements is a cumbersome process. Over the past decade, glaciers have been repeatedly observed through microwave sensors on-board various satellites. Various techniques have been proposed in the literature to estimate glacier velocity using microwave observations. Over the recent past, the trend in glacier velocity monitoring has shifted from interferometric tracking to intensity tracking. In this paper, we propose a method based on Stokes vector correlation of time lapse microwave observations. This method is proposed as an improvement over the conventional intensity correlation technique.","PeriodicalId":350698,"journal":{"name":"2015 IEEE 5th Asia-Pacific Conference on Synthetic Aperture Radar (APSAR)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Glacier surface velocity estimation using stokes vector correlation\",\"authors\":\"A. Muhuri, A. Bhattacharya, R. Natsuaki, A. Hirose\",\"doi\":\"10.1109/APSAR.2015.7306281\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cryosphere plays a crucial role in regulating local and global climate. Glaciers form an important component of this frozen part of the Earth's system. They exist over a prolonged period and are largest reservoir of freshwater on Earth. The meltwater from the glaciers during warmer seasons contribute to the river systems in absence of other sources. The run-off is also useful for agriculture, power generation, and is rich in alluvium. Retreating glaciers gives rise to pro-glacial lakes formed by damming action of moraine or ice. Rupturing of ice dams have caused serious damage to infrastructure and human lives in the past. Such useful and dynamic characteristics of a glacier motivate us to study its movement. Monitoring glaciers through in-situ field measurements is a cumbersome process. Over the past decade, glaciers have been repeatedly observed through microwave sensors on-board various satellites. Various techniques have been proposed in the literature to estimate glacier velocity using microwave observations. Over the recent past, the trend in glacier velocity monitoring has shifted from interferometric tracking to intensity tracking. In this paper, we propose a method based on Stokes vector correlation of time lapse microwave observations. This method is proposed as an improvement over the conventional intensity correlation technique.\",\"PeriodicalId\":350698,\"journal\":{\"name\":\"2015 IEEE 5th Asia-Pacific Conference on Synthetic Aperture Radar (APSAR)\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE 5th Asia-Pacific Conference on Synthetic Aperture Radar (APSAR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/APSAR.2015.7306281\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 5th Asia-Pacific Conference on Synthetic Aperture Radar (APSAR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APSAR.2015.7306281","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

冰冻圈在调节当地和全球气候方面起着至关重要的作用。冰川是地球系统冰冻部分的重要组成部分。它们存在的时间很长,是地球上最大的淡水水库。在没有其他来源的情况下,温暖季节来自冰川的融水对河流系统有贡献。径流对农业、发电也很有用,而且富含冲积物。退缩的冰川产生了由冰碛或冰筑坝作用形成的前冰川湖泊。过去,冰坝的破裂对基础设施和人类生命造成了严重的破坏。冰川的这种有用的动态特征促使我们研究它的运动。通过实地测量来监测冰川是一个繁琐的过程。在过去的十年里,人们通过各种卫星上的微波传感器反复观测冰川。文献中提出了利用微波观测估计冰川速度的各种技术。近年来,冰川速度监测的趋势已经从干涉跟踪转向强度跟踪。本文提出了一种基于Stokes矢量相关的时移微波观测方法。该方法是对传统强度相关技术的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Glacier surface velocity estimation using stokes vector correlation
Cryosphere plays a crucial role in regulating local and global climate. Glaciers form an important component of this frozen part of the Earth's system. They exist over a prolonged period and are largest reservoir of freshwater on Earth. The meltwater from the glaciers during warmer seasons contribute to the river systems in absence of other sources. The run-off is also useful for agriculture, power generation, and is rich in alluvium. Retreating glaciers gives rise to pro-glacial lakes formed by damming action of moraine or ice. Rupturing of ice dams have caused serious damage to infrastructure and human lives in the past. Such useful and dynamic characteristics of a glacier motivate us to study its movement. Monitoring glaciers through in-situ field measurements is a cumbersome process. Over the past decade, glaciers have been repeatedly observed through microwave sensors on-board various satellites. Various techniques have been proposed in the literature to estimate glacier velocity using microwave observations. Over the recent past, the trend in glacier velocity monitoring has shifted from interferometric tracking to intensity tracking. In this paper, we propose a method based on Stokes vector correlation of time lapse microwave observations. This method is proposed as an improvement over the conventional intensity correlation technique.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multi-static MIMO-SAR three dimensional deformation measurement system Application of microwave imaging in regional deformation monitoring using ground based SAR River detection from SAR images SAR image synthesis with chirp scaling algorithm of 3D CAD model using EM simulator Electronic beam steering using PLL array for radar applications in W-band
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1