机器学习的应用:基于神经网络的亚洲期权定价分析

Z. Fang, K. M. George
{"title":"机器学习的应用:基于神经网络的亚洲期权定价分析","authors":"Z. Fang, K. M. George","doi":"10.1109/ICEBE.2017.30","DOIUrl":null,"url":null,"abstract":"Pricing Asian Option is imperative to researchers, analysts, traders and any other related experts involved in the option trading markets and the academic field. Not only trading highly affected by the accuracy of the price of Asian options but also portfolios that involve hedging of commodity. Several attempts have been made to model the Asian option prices with closed-form over the past twenty years such as the Kemna-Vorst Model and Levy Approximation. Although today the two closed-form models are still widely used, their accuracy and reliability are called into question. The reason is simple; the Kemna-Vorst model is derived with an assumption of geometric mean of the stocks. In practice, Average Priced Options are mostly arithmetic and thus always have a volatility high than the volatility of a geometric mean making the Asian options always underpriced. On the other hand, the Levy Approximation using Monte Carlo Simulation as a benchmark, do not perform well when the product of the sigma (volatility) and square root maturity of the underlying is larger than 0.2. When the maturity of the option enlarges, the performance of the Levy Approximation largely deteriorates. If the closed-form models could be improved, higher frequency trading of Asian option will become possible. Moreover, building neural networks for different contracts of Asian Options allows reuse of computed prices and large-scale portfolio management that involves many contracts. In this thesis, we use Neural Network to fill the gap between the price of a closed-form model and that of an Asian option. The significance of this method answers two interesting questions. First, could an Asian option trader with a systematic behavior in pricing learned from previous quotes improve his pricing or trading performance in the future? Second, will a training set of previous data help to improve the performance of a financial model? We perform two simulation experiments and show that the performance of the closed-form model is significantly improved. Moreover, we extend the learning process to real data quote. The use of Neural Network highly improves the accuracy of the traditional closed-form model. The model's original price is not so much accurate as what we estimate using Neural network and could not capture the high volatility effectively; still, it provides a relative reasonable fit to the problem (Especially the Levy Model). The analysis shows that the Neural Network Algorithms we used affect the results significantly.","PeriodicalId":347774,"journal":{"name":"2017 IEEE 14th International Conference on e-Business Engineering (ICEBE)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Application of Machine Learning: An Analysis of Asian Options Pricing Using Neural Network\",\"authors\":\"Z. Fang, K. M. George\",\"doi\":\"10.1109/ICEBE.2017.30\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Pricing Asian Option is imperative to researchers, analysts, traders and any other related experts involved in the option trading markets and the academic field. Not only trading highly affected by the accuracy of the price of Asian options but also portfolios that involve hedging of commodity. Several attempts have been made to model the Asian option prices with closed-form over the past twenty years such as the Kemna-Vorst Model and Levy Approximation. Although today the two closed-form models are still widely used, their accuracy and reliability are called into question. The reason is simple; the Kemna-Vorst model is derived with an assumption of geometric mean of the stocks. In practice, Average Priced Options are mostly arithmetic and thus always have a volatility high than the volatility of a geometric mean making the Asian options always underpriced. On the other hand, the Levy Approximation using Monte Carlo Simulation as a benchmark, do not perform well when the product of the sigma (volatility) and square root maturity of the underlying is larger than 0.2. When the maturity of the option enlarges, the performance of the Levy Approximation largely deteriorates. If the closed-form models could be improved, higher frequency trading of Asian option will become possible. Moreover, building neural networks for different contracts of Asian Options allows reuse of computed prices and large-scale portfolio management that involves many contracts. In this thesis, we use Neural Network to fill the gap between the price of a closed-form model and that of an Asian option. The significance of this method answers two interesting questions. First, could an Asian option trader with a systematic behavior in pricing learned from previous quotes improve his pricing or trading performance in the future? Second, will a training set of previous data help to improve the performance of a financial model? We perform two simulation experiments and show that the performance of the closed-form model is significantly improved. Moreover, we extend the learning process to real data quote. The use of Neural Network highly improves the accuracy of the traditional closed-form model. The model's original price is not so much accurate as what we estimate using Neural network and could not capture the high volatility effectively; still, it provides a relative reasonable fit to the problem (Especially the Levy Model). The analysis shows that the Neural Network Algorithms we used affect the results significantly.\",\"PeriodicalId\":347774,\"journal\":{\"name\":\"2017 IEEE 14th International Conference on e-Business Engineering (ICEBE)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE 14th International Conference on e-Business Engineering (ICEBE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICEBE.2017.30\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 14th International Conference on e-Business Engineering (ICEBE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEBE.2017.30","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

亚洲期权定价必须研究人员、分析师、交易员和任何其他相关专家参与期权交易市场和学术领域。不仅交易受到亚洲期权价格准确性的高度影响,涉及大宗商品对冲的投资组合也受到影响。在过去的二十年中,对亚洲期权价格进行了一些封闭式建模的尝试,如Kemna-Vorst模型和Levy近似。尽管今天这两种封闭模型仍被广泛使用,但它们的准确性和可靠性受到质疑。原因很简单;在股票几何平均的假设下,导出了Kemna-Vorst模型。在实践中,平均定价期权大多是算术式的,因此波动性总是高于几何平均的波动性,这使得亚洲期权总是被低估。另一方面,以蒙特卡罗模拟为基准的Levy近似,当标的的sigma(波动率)与平方根成熟度的乘积大于0.2时,表现不佳。当期权期限增大时,Levy近似的性能大大恶化。如果对封闭模型进行改进,亚洲期权的高频交易将成为可能。此外,为亚洲期权的不同合约建立神经网络,可以重复使用计算价格和涉及许多合约的大规模投资组合管理。在本文中,我们使用神经网络来填补封闭模型和亚洲期权之间的价格差距。这种方法的意义回答了两个有趣的问题。首先,如果一个亚洲期权交易者从之前的报价中学习了系统的定价行为,那么他将来的定价或交易表现是否会得到改善?第二,以前数据的训练集是否有助于提高财务模型的性能?我们进行了两次仿真实验,结果表明封闭式模型的性能得到了显著提高。此外,我们将学习过程扩展到实际数据引用。神经网络的应用大大提高了传统封闭模型的精度。模型的原始价格不如我们用神经网络估计的准确,不能有效地捕捉高波动性;尽管如此,它还是为这个问题提供了一个相对合理的拟合(尤其是利维模型)。分析表明,我们使用的神经网络算法对结果有显著影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Application of Machine Learning: An Analysis of Asian Options Pricing Using Neural Network
Pricing Asian Option is imperative to researchers, analysts, traders and any other related experts involved in the option trading markets and the academic field. Not only trading highly affected by the accuracy of the price of Asian options but also portfolios that involve hedging of commodity. Several attempts have been made to model the Asian option prices with closed-form over the past twenty years such as the Kemna-Vorst Model and Levy Approximation. Although today the two closed-form models are still widely used, their accuracy and reliability are called into question. The reason is simple; the Kemna-Vorst model is derived with an assumption of geometric mean of the stocks. In practice, Average Priced Options are mostly arithmetic and thus always have a volatility high than the volatility of a geometric mean making the Asian options always underpriced. On the other hand, the Levy Approximation using Monte Carlo Simulation as a benchmark, do not perform well when the product of the sigma (volatility) and square root maturity of the underlying is larger than 0.2. When the maturity of the option enlarges, the performance of the Levy Approximation largely deteriorates. If the closed-form models could be improved, higher frequency trading of Asian option will become possible. Moreover, building neural networks for different contracts of Asian Options allows reuse of computed prices and large-scale portfolio management that involves many contracts. In this thesis, we use Neural Network to fill the gap between the price of a closed-form model and that of an Asian option. The significance of this method answers two interesting questions. First, could an Asian option trader with a systematic behavior in pricing learned from previous quotes improve his pricing or trading performance in the future? Second, will a training set of previous data help to improve the performance of a financial model? We perform two simulation experiments and show that the performance of the closed-form model is significantly improved. Moreover, we extend the learning process to real data quote. The use of Neural Network highly improves the accuracy of the traditional closed-form model. The model's original price is not so much accurate as what we estimate using Neural network and could not capture the high volatility effectively; still, it provides a relative reasonable fit to the problem (Especially the Levy Model). The analysis shows that the Neural Network Algorithms we used affect the results significantly.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Integrated System Optimization Based on the Boiler Combustion and Denitration with Denitration Operating Cost Consideration Chinese Questions Classification in the Law Domain Dust Removal with Boundary and Spatial Constraint for Videos Captured in Car Indexing for Large Scale Data Querying Based on Spark SQL Finding K-Most Influential Users in Social Networks for Information Diffusion Based on Network Structure and Different User Behavioral Patterns
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1