丰富潜水计算机的身体传感器网络数据

André Stollenwerk, F. Sehl, G. Marx, S. Kowalewski, Thorsten Janisch
{"title":"丰富潜水计算机的身体传感器网络数据","authors":"André Stollenwerk, F. Sehl, G. Marx, S. Kowalewski, Thorsten Janisch","doi":"10.1109/BSN.2017.7936034","DOIUrl":null,"url":null,"abstract":"Decompression algorithms in hyperbaric applications currently usually base on information about the ambient pressure in a temporal course. However, the impact of other factors like temperature or physical activity is well documented in literature. Therefore, we elaborated a prototypic setup, which is not only able to enrich the decompression algorithms run on a diving computer by this data, but also store this information for successive data mining.","PeriodicalId":249670,"journal":{"name":"2017 IEEE 14th International Conference on Wearable and Implantable Body Sensor Networks (BSN)","volume":"71 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Enrichment of a diving computer with body sensor network data\",\"authors\":\"André Stollenwerk, F. Sehl, G. Marx, S. Kowalewski, Thorsten Janisch\",\"doi\":\"10.1109/BSN.2017.7936034\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Decompression algorithms in hyperbaric applications currently usually base on information about the ambient pressure in a temporal course. However, the impact of other factors like temperature or physical activity is well documented in literature. Therefore, we elaborated a prototypic setup, which is not only able to enrich the decompression algorithms run on a diving computer by this data, but also store this information for successive data mining.\",\"PeriodicalId\":249670,\"journal\":{\"name\":\"2017 IEEE 14th International Conference on Wearable and Implantable Body Sensor Networks (BSN)\",\"volume\":\"71 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE 14th International Conference on Wearable and Implantable Body Sensor Networks (BSN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BSN.2017.7936034\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 14th International Conference on Wearable and Implantable Body Sensor Networks (BSN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BSN.2017.7936034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

目前,高压应用中的减压算法通常基于一段时间内的环境压力信息。然而,温度或身体活动等其他因素的影响在文献中有很好的记载。因此,我们设计了一个原型设置,它不仅可以丰富在潜水计算机上运行的解压算法,而且可以存储这些信息,以便进行后续的数据挖掘。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Enrichment of a diving computer with body sensor network data
Decompression algorithms in hyperbaric applications currently usually base on information about the ambient pressure in a temporal course. However, the impact of other factors like temperature or physical activity is well documented in literature. Therefore, we elaborated a prototypic setup, which is not only able to enrich the decompression algorithms run on a diving computer by this data, but also store this information for successive data mining.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Radiowave propagation characteristics of the intra-body channel at 2.38 GHz Smart-shoe self-powered by walking A personalized air quality sensing system - a preliminary study on assessing the air quality of London underground stations Unsupervised deep representation learning to remove motion artifacts in free-mode body sensor networks Quantifying postural instability in Parkinsonian gait from inertial sensor data during standardised clinical gait tests
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1