更少的样品,更长的寿命:迈向长期可穿戴的PPG分析

Florian Wolling, Kristof Van Laerhoven
{"title":"更少的样品,更长的寿命:迈向长期可穿戴的PPG分析","authors":"Florian Wolling, Kristof Van Laerhoven","doi":"10.1145/3266157.3266209","DOIUrl":null,"url":null,"abstract":"Photoplethysmography (PPG) sensors have become a prevalent feature included in current wearables, as the cost and size of current PPG modules have dropped significantly. Research in the analysis of PPG data has recently expanded beyond the fast and accurate characterization of heart rate, into the adaptive handling of artifacts within the signal and even the capturing of respiration rate. In this paper, we instead explore using state-of-the-art PPG sensor modules for long-term wearable deployment and the observation of trends over minutes, rather than seconds. By focusing specifically on lowering the sampling rate and via analysis of the spectrum of frequencies alone, our approach minimizes the costly illumination-based sensing and can be used to detect the dominant frequencies of heart rate and respiration rate, but also enables to infer on activity of the sympathetic nervous system. We show in two experiments that such detections and measurements can still be achieved at low sampling rates down to 10 Hz, within a power-efficient platform. This approach enables miniature sensor designs that monitor average heart rate, respiration rate, and sympathetic nerve activity over longer stretches of time.","PeriodicalId":151070,"journal":{"name":"Proceedings of the 5th International Workshop on Sensor-based Activity Recognition and Interaction","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Fewer Samples for a Longer Life Span: Towards Long-Term Wearable PPG Analysis\",\"authors\":\"Florian Wolling, Kristof Van Laerhoven\",\"doi\":\"10.1145/3266157.3266209\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Photoplethysmography (PPG) sensors have become a prevalent feature included in current wearables, as the cost and size of current PPG modules have dropped significantly. Research in the analysis of PPG data has recently expanded beyond the fast and accurate characterization of heart rate, into the adaptive handling of artifacts within the signal and even the capturing of respiration rate. In this paper, we instead explore using state-of-the-art PPG sensor modules for long-term wearable deployment and the observation of trends over minutes, rather than seconds. By focusing specifically on lowering the sampling rate and via analysis of the spectrum of frequencies alone, our approach minimizes the costly illumination-based sensing and can be used to detect the dominant frequencies of heart rate and respiration rate, but also enables to infer on activity of the sympathetic nervous system. We show in two experiments that such detections and measurements can still be achieved at low sampling rates down to 10 Hz, within a power-efficient platform. This approach enables miniature sensor designs that monitor average heart rate, respiration rate, and sympathetic nerve activity over longer stretches of time.\",\"PeriodicalId\":151070,\"journal\":{\"name\":\"Proceedings of the 5th International Workshop on Sensor-based Activity Recognition and Interaction\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 5th International Workshop on Sensor-based Activity Recognition and Interaction\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3266157.3266209\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 5th International Workshop on Sensor-based Activity Recognition and Interaction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3266157.3266209","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

随着当前PPG模块的成本和尺寸显著下降,光电体积脉搏描记(PPG)传感器已成为当前可穿戴设备中普遍存在的功能。最近,对PPG数据分析的研究已经超越了对心率的快速准确表征,扩展到了对信号中伪影的自适应处理,甚至是呼吸速率的捕捉。在本文中,我们探索使用最先进的PPG传感器模块进行长期可穿戴部署,并在几分钟内观察趋势,而不是几秒钟。通过专注于降低采样率,并通过单独分析频率频谱,我们的方法最大限度地减少了昂贵的基于照明的传感,可用于检测心率和呼吸频率的主导频率,但也能够推断交感神经系统的活动。我们在两个实验中表明,在节能平台内,这种检测和测量仍然可以在低采样率(低至10 Hz)下实现。这种方法使微型传感器设计能够在较长时间内监测平均心率、呼吸率和交感神经活动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fewer Samples for a Longer Life Span: Towards Long-Term Wearable PPG Analysis
Photoplethysmography (PPG) sensors have become a prevalent feature included in current wearables, as the cost and size of current PPG modules have dropped significantly. Research in the analysis of PPG data has recently expanded beyond the fast and accurate characterization of heart rate, into the adaptive handling of artifacts within the signal and even the capturing of respiration rate. In this paper, we instead explore using state-of-the-art PPG sensor modules for long-term wearable deployment and the observation of trends over minutes, rather than seconds. By focusing specifically on lowering the sampling rate and via analysis of the spectrum of frequencies alone, our approach minimizes the costly illumination-based sensing and can be used to detect the dominant frequencies of heart rate and respiration rate, but also enables to infer on activity of the sympathetic nervous system. We show in two experiments that such detections and measurements can still be achieved at low sampling rates down to 10 Hz, within a power-efficient platform. This approach enables miniature sensor designs that monitor average heart rate, respiration rate, and sympathetic nerve activity over longer stretches of time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Activity Recognition using Head Worn Inertial Sensors A Machine Learning Approach to Violin Bow Technique Classification: a Comparison Between IMU and MOCAP systems Using Wrist-Worn Activity Recognition for Basketball Game Analysis Towards a task-driven framework for multimodal fatigue analysis during physical and cognitive tasks Exploring Accelerometer-based Step Detection by using a Wheeled Walking Frame
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1