基于局部子窗口的鲁棒子空间位置测量

A. Smit, D. Schuurman
{"title":"基于局部子窗口的鲁棒子空间位置测量","authors":"A. Smit, D. Schuurman","doi":"10.1109/CRV.2007.57","DOIUrl":null,"url":null,"abstract":"The use of localized principal component analysis is examined for visual position determination in the presence of varying degrees of occlusions. Occlusions lead to substantial position measurement errors when projecting images into eigenspace. One way to improve robustness to occlusions is to select small sub-windows so that if some sub-windows are occluded, others can still accurately identify position. The location of candidate sub-windows are predetermined from a set of training images by subtracting the average image from each and then selecting regions using an attention operator. Since attention operators can be computationally time-intensive, the location of all sub-windows are determined a-priori during the training phase. The sub-windows in each of the training images are then projected into eigenspace. Once the training phase is complete, the run-time execution can be performed efficiently since all the sub-windows have been preselected. Input images are classified by each sub-window; majority voting is then used to determine the position estimate. Various experiments are performed including linear and rotational motion, and the ego motion of a mobile robot. This technique is shown to provide greater position measurement accuracy in the presence of severe occlusions as compared to the projection of entire images.","PeriodicalId":304254,"journal":{"name":"Fourth Canadian Conference on Computer and Robot Vision (CRV '07)","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Robust Subspace Position Measurement Using Localized Sub-Windows\",\"authors\":\"A. Smit, D. Schuurman\",\"doi\":\"10.1109/CRV.2007.57\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The use of localized principal component analysis is examined for visual position determination in the presence of varying degrees of occlusions. Occlusions lead to substantial position measurement errors when projecting images into eigenspace. One way to improve robustness to occlusions is to select small sub-windows so that if some sub-windows are occluded, others can still accurately identify position. The location of candidate sub-windows are predetermined from a set of training images by subtracting the average image from each and then selecting regions using an attention operator. Since attention operators can be computationally time-intensive, the location of all sub-windows are determined a-priori during the training phase. The sub-windows in each of the training images are then projected into eigenspace. Once the training phase is complete, the run-time execution can be performed efficiently since all the sub-windows have been preselected. Input images are classified by each sub-window; majority voting is then used to determine the position estimate. Various experiments are performed including linear and rotational motion, and the ego motion of a mobile robot. This technique is shown to provide greater position measurement accuracy in the presence of severe occlusions as compared to the projection of entire images.\",\"PeriodicalId\":304254,\"journal\":{\"name\":\"Fourth Canadian Conference on Computer and Robot Vision (CRV '07)\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fourth Canadian Conference on Computer and Robot Vision (CRV '07)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CRV.2007.57\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fourth Canadian Conference on Computer and Robot Vision (CRV '07)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CRV.2007.57","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

局部主成分分析的使用检查了在不同程度的闭塞存在的视觉位置确定。当将图像投影到特征空间时,遮挡会导致大量的位置测量误差。提高遮挡鲁棒性的一种方法是选择较小的子窗口,以便在某些子窗口被遮挡的情况下,其他子窗口仍然可以准确地识别位置。候选子窗口的位置是通过从一组训练图像中减去每个图像的平均值,然后使用注意算子选择区域来确定的。由于注意算子的计算时间很长,所以所有子窗口的位置都是在训练阶段先验确定的。然后将每个训练图像中的子窗口投影到特征空间中。一旦训练阶段完成,运行时执行可以高效地执行,因为所有的子窗口都已经预选好了。输入图像按每个子窗口进行分类;然后使用多数投票来确定位置估计。进行了各种实验,包括直线运动和旋转运动,以及移动机器人的自我运动。与整个图像的投影相比,该技术在存在严重遮挡的情况下提供了更高的位置测量精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Robust Subspace Position Measurement Using Localized Sub-Windows
The use of localized principal component analysis is examined for visual position determination in the presence of varying degrees of occlusions. Occlusions lead to substantial position measurement errors when projecting images into eigenspace. One way to improve robustness to occlusions is to select small sub-windows so that if some sub-windows are occluded, others can still accurately identify position. The location of candidate sub-windows are predetermined from a set of training images by subtracting the average image from each and then selecting regions using an attention operator. Since attention operators can be computationally time-intensive, the location of all sub-windows are determined a-priori during the training phase. The sub-windows in each of the training images are then projected into eigenspace. Once the training phase is complete, the run-time execution can be performed efficiently since all the sub-windows have been preselected. Input images are classified by each sub-window; majority voting is then used to determine the position estimate. Various experiments are performed including linear and rotational motion, and the ego motion of a mobile robot. This technique is shown to provide greater position measurement accuracy in the presence of severe occlusions as compared to the projection of entire images.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Identification and Recognition of Objects in Color Stereo Images Using a Hierachial SOM Version and vergence control of a stereo camera head by fitting the movement into the Hering's law Using Feature Selection For Object Segmentation and Tracking Can Lucas-Kanade be used to estimate motion parallax in 3D cluttered scenes? A Simple Operator for Very Precise Estimation of Ellipses
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1