移动平均估计的长自回归模型的最佳阶数

P. Broersen
{"title":"移动平均估计的长自回归模型的最佳阶数","authors":"P. Broersen","doi":"10.5281/ZENODO.35981","DOIUrl":null,"url":null,"abstract":"Durbin's method for Moving Average (MA) estimation uses the estimated parameters of a long AutoRegressive (AR) model to compute the desired MA parameters. A theoretical order for that long AR model is ∞, but very high AR orders lead to inaccurate MA models in the finite sample practice. A new theoretical argument is presented to derive an expression for the best finite long AR order for a known MA process and a given sample size. Intermediate AR models of precisely that order produce the most accurate MA models. This new order differs from the best AR order to be used for prediction. An algorithm is presented that enables use of the theory for the best long AR order in known processes to data of an unknown process.","PeriodicalId":282153,"journal":{"name":"1996 8th European Signal Processing Conference (EUSIPCO 1996)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"The best order of long autoregressive models for moving average estimation\",\"authors\":\"P. Broersen\",\"doi\":\"10.5281/ZENODO.35981\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Durbin's method for Moving Average (MA) estimation uses the estimated parameters of a long AutoRegressive (AR) model to compute the desired MA parameters. A theoretical order for that long AR model is ∞, but very high AR orders lead to inaccurate MA models in the finite sample practice. A new theoretical argument is presented to derive an expression for the best finite long AR order for a known MA process and a given sample size. Intermediate AR models of precisely that order produce the most accurate MA models. This new order differs from the best AR order to be used for prediction. An algorithm is presented that enables use of the theory for the best long AR order in known processes to data of an unknown process.\",\"PeriodicalId\":282153,\"journal\":{\"name\":\"1996 8th European Signal Processing Conference (EUSIPCO 1996)\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1996-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"1996 8th European Signal Processing Conference (EUSIPCO 1996)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5281/ZENODO.35981\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"1996 8th European Signal Processing Conference (EUSIPCO 1996)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5281/ZENODO.35981","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

Durbin的移动平均线(MA)估计方法使用长自回归(AR)模型的估计参数来计算所需的移动平均线参数。长AR模型的理论阶数为∞,但在有限样本实践中,非常高的AR阶数会导致不准确的MA模型。提出了一个新的理论论点,推导了已知MA过程和给定样本量的最佳有限长AR阶的表达式。这种阶数的中间AR模型产生最精确的MA模型。这个新顺序不同于用于预测的最佳AR顺序。提出了一种算法,使该理论能够在已知过程中对未知过程的数据进行最佳的长AR顺序。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The best order of long autoregressive models for moving average estimation
Durbin's method for Moving Average (MA) estimation uses the estimated parameters of a long AutoRegressive (AR) model to compute the desired MA parameters. A theoretical order for that long AR model is ∞, but very high AR orders lead to inaccurate MA models in the finite sample practice. A new theoretical argument is presented to derive an expression for the best finite long AR order for a known MA process and a given sample size. Intermediate AR models of precisely that order produce the most accurate MA models. This new order differs from the best AR order to be used for prediction. An algorithm is presented that enables use of the theory for the best long AR order in known processes to data of an unknown process.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
PDF Not Yet Available In IEEE Xplore Parameter estimation of exponentially damped sinusoids using second order statistics A multivariable Steiglitz-McBride method On the approximation of nonbandlimited signals by nonuniform sampling series Model reduction by Kautz filters
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1