具有公平性意识的时间图保团谱聚类

Dongqi Fu, Dawei Zhou, Ross Maciejewski, A. Croitoru, Marcus Boyd, Jingrui He
{"title":"具有公平性意识的时间图保团谱聚类","authors":"Dongqi Fu, Dawei Zhou, Ross Maciejewski, A. Croitoru, Marcus Boyd, Jingrui He","doi":"10.1145/3543507.3583423","DOIUrl":null,"url":null,"abstract":"With the widespread development of algorithmic fairness, there has been a surge of research interest that aims to generalize the fairness notions from the attributed data to the relational data (graphs). The vast majority of existing work considers the fairness measure in terms of the low-order connectivity patterns (e.g., edges), while overlooking the higher-order patterns (e.g., k-cliques) and the dynamic nature of real-world graphs. For example, preserving triangles from graph cuts during clustering is the key to detecting compact communities; however, if the clustering algorithm only pays attention to triangle-based compactness, then the returned communities lose the fairness guarantee for each group in the graph. Furthermore, in practice, when the graph (e.g., social networks) topology constantly changes over time, one natural question is how can we ensure the compactness and demographic parity at each timestamp efficiently. To address these problems, we start from the static setting and propose a spectral method that preserves clique connections and incorporates demographic fairness constraints in returned clusters at the same time. To make this static method fit for the dynamic setting, we propose two core techniques, Laplacian Update via Edge Filtering and Searching and Eigen-Pairs Update with Singularity Avoided. Finally, all proposed components are combined into an end-to-end clustering framework named F-SEGA, and we conduct extensive experiments to demonstrate the effectiveness, efficiency, and robustness of F-SEGA.","PeriodicalId":296351,"journal":{"name":"Proceedings of the ACM Web Conference 2023","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Fairness-Aware Clique-Preserving Spectral Clustering of Temporal Graphs\",\"authors\":\"Dongqi Fu, Dawei Zhou, Ross Maciejewski, A. Croitoru, Marcus Boyd, Jingrui He\",\"doi\":\"10.1145/3543507.3583423\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the widespread development of algorithmic fairness, there has been a surge of research interest that aims to generalize the fairness notions from the attributed data to the relational data (graphs). The vast majority of existing work considers the fairness measure in terms of the low-order connectivity patterns (e.g., edges), while overlooking the higher-order patterns (e.g., k-cliques) and the dynamic nature of real-world graphs. For example, preserving triangles from graph cuts during clustering is the key to detecting compact communities; however, if the clustering algorithm only pays attention to triangle-based compactness, then the returned communities lose the fairness guarantee for each group in the graph. Furthermore, in practice, when the graph (e.g., social networks) topology constantly changes over time, one natural question is how can we ensure the compactness and demographic parity at each timestamp efficiently. To address these problems, we start from the static setting and propose a spectral method that preserves clique connections and incorporates demographic fairness constraints in returned clusters at the same time. To make this static method fit for the dynamic setting, we propose two core techniques, Laplacian Update via Edge Filtering and Searching and Eigen-Pairs Update with Singularity Avoided. Finally, all proposed components are combined into an end-to-end clustering framework named F-SEGA, and we conduct extensive experiments to demonstrate the effectiveness, efficiency, and robustness of F-SEGA.\",\"PeriodicalId\":296351,\"journal\":{\"name\":\"Proceedings of the ACM Web Conference 2023\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ACM Web Conference 2023\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3543507.3583423\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM Web Conference 2023","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3543507.3583423","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

随着算法公平性的广泛发展,将公平性概念从属性数据推广到关系数据(图)的研究兴趣激增。现有的绝大多数工作都考虑了低阶连接模式(例如,边)的公平性度量,而忽略了高阶模式(例如,k-cliques)和现实世界图的动态性。例如,在聚类过程中保持三角形不被图切割是检测紧凑群落的关键;然而,如果聚类算法只关注基于三角形的紧凑性,那么返回的群体就失去了对图中每个组的公平性保证。此外,在实践中,当图(例如社交网络)拓扑结构随着时间不断变化时,一个自然的问题是我们如何有效地确保每个时间戳的紧凑性和人口均等。为了解决这些问题,我们从静态设置开始,提出了一种频谱方法,该方法保留了集团连接,同时在返回的集群中纳入了人口统计公平性约束。为了使这种静态方法适应动态环境,我们提出了两种核心技术:基于边缘滤波和搜索的拉普拉斯更新技术和避免奇异点的特征对更新技术。最后,将所有提出的组件组合到一个名为F-SEGA的端到端聚类框架中,并进行了大量的实验来证明F-SEGA的有效性、效率和鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fairness-Aware Clique-Preserving Spectral Clustering of Temporal Graphs
With the widespread development of algorithmic fairness, there has been a surge of research interest that aims to generalize the fairness notions from the attributed data to the relational data (graphs). The vast majority of existing work considers the fairness measure in terms of the low-order connectivity patterns (e.g., edges), while overlooking the higher-order patterns (e.g., k-cliques) and the dynamic nature of real-world graphs. For example, preserving triangles from graph cuts during clustering is the key to detecting compact communities; however, if the clustering algorithm only pays attention to triangle-based compactness, then the returned communities lose the fairness guarantee for each group in the graph. Furthermore, in practice, when the graph (e.g., social networks) topology constantly changes over time, one natural question is how can we ensure the compactness and demographic parity at each timestamp efficiently. To address these problems, we start from the static setting and propose a spectral method that preserves clique connections and incorporates demographic fairness constraints in returned clusters at the same time. To make this static method fit for the dynamic setting, we propose two core techniques, Laplacian Update via Edge Filtering and Searching and Eigen-Pairs Update with Singularity Avoided. Finally, all proposed components are combined into an end-to-end clustering framework named F-SEGA, and we conduct extensive experiments to demonstrate the effectiveness, efficiency, and robustness of F-SEGA.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
CurvDrop: A Ricci Curvature Based Approach to Prevent Graph Neural Networks from Over-Smoothing and Over-Squashing Learning to Simulate Crowd Trajectories with Graph Networks Word Sense Disambiguation by Refining Target Word Embedding Curriculum Graph Poisoning Optimizing Guided Traversal for Fast Learned Sparse Retrieval
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1