快速和可扩展的关键点识别和图像检索使用二进制代码

Jonathan Ventura, Tobias Höllerer
{"title":"快速和可扩展的关键点识别和图像检索使用二进制代码","authors":"Jonathan Ventura, Tobias Höllerer","doi":"10.1109/WACV.2011.5711573","DOIUrl":null,"url":null,"abstract":"In this paper we report an evaluation of keypoint descriptor compression using as little as 16 bits to describe a single keypoint. We use spectral hashing to compress keypoint descriptors, and match them using the Hamming distance. By indexing the keypoints in a binary tree, we can quickly recognize keypoints with a very small database, and efficiently insert new keypoints. Our tests using image datasets with perspective distortion show the method to enable fast keypoint recognition and image retrieval with a small code size, and point towards potential applications for scalable visual SLAM on mobile phones.","PeriodicalId":424724,"journal":{"name":"2011 IEEE Workshop on Applications of Computer Vision (WACV)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Fast and scalable keypoint recognition and image retrieval using binary codes\",\"authors\":\"Jonathan Ventura, Tobias Höllerer\",\"doi\":\"10.1109/WACV.2011.5711573\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we report an evaluation of keypoint descriptor compression using as little as 16 bits to describe a single keypoint. We use spectral hashing to compress keypoint descriptors, and match them using the Hamming distance. By indexing the keypoints in a binary tree, we can quickly recognize keypoints with a very small database, and efficiently insert new keypoints. Our tests using image datasets with perspective distortion show the method to enable fast keypoint recognition and image retrieval with a small code size, and point towards potential applications for scalable visual SLAM on mobile phones.\",\"PeriodicalId\":424724,\"journal\":{\"name\":\"2011 IEEE Workshop on Applications of Computer Vision (WACV)\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-01-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE Workshop on Applications of Computer Vision (WACV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WACV.2011.5711573\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE Workshop on Applications of Computer Vision (WACV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WACV.2011.5711573","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

在本文中,我们报告了一个关键点描述符压缩的评估,使用少至16位来描述单个关键点。我们使用谱散列压缩关键点描述符,并使用汉明距离进行匹配。通过索引二叉树中的关键点,我们可以在很小的数据库中快速识别关键点,并有效地插入新的关键点。我们使用具有视角失真的图像数据集进行的测试表明,该方法可以用较小的代码大小实现快速关键点识别和图像检索,并指出在手机上可扩展的视觉SLAM的潜在应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fast and scalable keypoint recognition and image retrieval using binary codes
In this paper we report an evaluation of keypoint descriptor compression using as little as 16 bits to describe a single keypoint. We use spectral hashing to compress keypoint descriptors, and match them using the Hamming distance. By indexing the keypoints in a binary tree, we can quickly recognize keypoints with a very small database, and efficiently insert new keypoints. Our tests using image datasets with perspective distortion show the method to enable fast keypoint recognition and image retrieval with a small code size, and point towards potential applications for scalable visual SLAM on mobile phones.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Tracking planes with Time of Flight cameras and J-linkage Multi-modal visual concept classification of images via Markov random walk over tags Real-time illumination-invariant motion detection in spatio-temporal image volumes An evaluation of bags-of-words and spatio-temporal shapes for action recognition Illumination change compensation techniques to improve kinematic tracking
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1