{"title":"EOS -风味物理现象学软件","authors":"M. Reboud","doi":"10.22323/1.409.0012","DOIUrl":null,"url":null,"abstract":"I present EOS, an open-source software dedicated to a variety of tasks in the processing of flavor physics observables. EOS is written in C++ and offers both a C++ and a Python interface. It is developed for three main tasks, the production of theoretical predictions for flavor physics observables; the inference of theoretical parameters from an extensible database of likelihoods; and the production of Monte Carlo samples of flavor processes for sensitivity studies.","PeriodicalId":426598,"journal":{"name":"Proceedings of Computational Tools for High Energy Physics and Cosmology — PoS(CompTools2021)","volume":"184 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"EOS – A Software for Flavor Physics Phenomenology\",\"authors\":\"M. Reboud\",\"doi\":\"10.22323/1.409.0012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"I present EOS, an open-source software dedicated to a variety of tasks in the processing of flavor physics observables. EOS is written in C++ and offers both a C++ and a Python interface. It is developed for three main tasks, the production of theoretical predictions for flavor physics observables; the inference of theoretical parameters from an extensible database of likelihoods; and the production of Monte Carlo samples of flavor processes for sensitivity studies.\",\"PeriodicalId\":426598,\"journal\":{\"name\":\"Proceedings of Computational Tools for High Energy Physics and Cosmology — PoS(CompTools2021)\",\"volume\":\"184 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of Computational Tools for High Energy Physics and Cosmology — PoS(CompTools2021)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22323/1.409.0012\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of Computational Tools for High Energy Physics and Cosmology — PoS(CompTools2021)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22323/1.409.0012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我介绍了EOS,这是一个开源软件,专门用于处理风味物理观测中的各种任务。EOS是用c++编写的,并提供c++和Python接口。它的发展有三个主要任务:对风味物理观测值进行理论预测;基于可扩展似然数据库的理论参数推断以及制作用于敏感性研究的风味过程的蒙特卡罗样品。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
EOS – A Software for Flavor Physics Phenomenology
I present EOS, an open-source software dedicated to a variety of tasks in the processing of flavor physics observables. EOS is written in C++ and offers both a C++ and a Python interface. It is developed for three main tasks, the production of theoretical predictions for flavor physics observables; the inference of theoretical parameters from an extensible database of likelihoods; and the production of Monte Carlo samples of flavor processes for sensitivity studies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Photon-ALP oscillations with ELMAG Review on Higgs Tools Likelihood analysis of the general 2HDM with Gambit's FlavBit Review of Dark Matter computational tools EOS – A Software for Flavor Physics Phenomenology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1