基于临界水平的can工业网络实时性改进

Ismail Ghodsollahee, Yasser Sedaghat
{"title":"基于临界水平的can工业网络实时性改进","authors":"Ismail Ghodsollahee, Yasser Sedaghat","doi":"10.52547/itrc.13.4.8","DOIUrl":null,"url":null,"abstract":"—Although applying new Internet-based communication technologies on industrial physical processes made great improvements in factory automation, there are still many challenges to meet the response time and reliability requirements of industrial communications. These challenges resulted from strict real-time requirements of industrial control system communications which are performed in harsh environments. The controller area network (CAN) communication protocol is commonly employed to deal with these challenges. However, in this protocol, even message retransmission requests of a faulty node can lead to timing failures. In this paper, to control the behavior of nodes, message retransmission is performed based on the criticality level of message reception. The proposed method, called MRMC+, improves the real-time behavior of a CAN bus in terms of response time by an average of 36.32% and 18.02%, respectively, compared to the standard CAN and WCTER-based approaches.","PeriodicalId":270455,"journal":{"name":"International Journal of Information and Communication Technology Research","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Real-Timeness Improvement of CAN-based Industrial Networks Based on Criticality Level\",\"authors\":\"Ismail Ghodsollahee, Yasser Sedaghat\",\"doi\":\"10.52547/itrc.13.4.8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"—Although applying new Internet-based communication technologies on industrial physical processes made great improvements in factory automation, there are still many challenges to meet the response time and reliability requirements of industrial communications. These challenges resulted from strict real-time requirements of industrial control system communications which are performed in harsh environments. The controller area network (CAN) communication protocol is commonly employed to deal with these challenges. However, in this protocol, even message retransmission requests of a faulty node can lead to timing failures. In this paper, to control the behavior of nodes, message retransmission is performed based on the criticality level of message reception. The proposed method, called MRMC+, improves the real-time behavior of a CAN bus in terms of response time by an average of 36.32% and 18.02%, respectively, compared to the standard CAN and WCTER-based approaches.\",\"PeriodicalId\":270455,\"journal\":{\"name\":\"International Journal of Information and Communication Technology Research\",\"volume\":\"56 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Information and Communication Technology Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.52547/itrc.13.4.8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Information and Communication Technology Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52547/itrc.13.4.8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

-虽然基于互联网的新型通信技术在工业物理过程中的应用使工厂自动化有了很大的提高,但在满足工业通信的响应时间和可靠性要求方面仍然存在许多挑战。这些挑战源于在恶劣环境中执行的工业控制系统通信的严格实时性要求。控制器局域网(CAN)通信协议通常被用来应对这些挑战。然而,在该协议中,即使是故障节点的消息重传请求也可能导致定时失败。为了控制节点的行为,本文根据消息接收的临界级别进行消息重传。与标准CAN和基于wcter的方法相比,所提出的MRMC+方法在响应时间方面平均提高了CAN总线的实时行为36.32%和18.02%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Real-Timeness Improvement of CAN-based Industrial Networks Based on Criticality Level
—Although applying new Internet-based communication technologies on industrial physical processes made great improvements in factory automation, there are still many challenges to meet the response time and reliability requirements of industrial communications. These challenges resulted from strict real-time requirements of industrial control system communications which are performed in harsh environments. The controller area network (CAN) communication protocol is commonly employed to deal with these challenges. However, in this protocol, even message retransmission requests of a faulty node can lead to timing failures. In this paper, to control the behavior of nodes, message retransmission is performed based on the criticality level of message reception. The proposed method, called MRMC+, improves the real-time behavior of a CAN bus in terms of response time by an average of 36.32% and 18.02%, respectively, compared to the standard CAN and WCTER-based approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Digital Image Enhancement Through Bi-Histogram Equalization Using Entropy-Based Plateau Limit Resource Management for a Multi-Channel Cognitive-NOMA D2D Network Providing a Solution to Reduce Energy Consumption in IoT-Based WSNs Based on Node Activity Management Collaborative Mappers based on Co-evolutionary Optimization Technique in MapReduce Spectrum Similarity-Based Quality Assessment Metric
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1