利用地理、人口统计和twitter衍生信息对犯罪事件进行时空建模

Xiaofeng Wang, Donald E. Brown, M. Gerber
{"title":"利用地理、人口统计和twitter衍生信息对犯罪事件进行时空建模","authors":"Xiaofeng Wang, Donald E. Brown, M. Gerber","doi":"10.1109/ISI.2012.6284088","DOIUrl":null,"url":null,"abstract":"Personal and property crimes create large economic losses within the United States. To prevent crimes, law enforcement agencies model the spatio-temporal pattern of criminal incidents. In this paper, we present a new modeling process that combines two of our recently developed approaches for modeling criminal incidents. The first component of the process is the spatio-temporal generalized additive model (STGAM), which predicts the probability of criminal activity at a given location and time using a feature-based approach. The second component involves textual analysis. In our experiments, we automatically analyzed Twitter posts, which provide a rich, event-based context for criminal incidents. In addition, we describe a new feature selection method to identify important features. We applied our new model to actual criminal incidents in Charlottesville, Virginia. Our results indicate that the STGAM/Twitter model outperforms our previous STGAM model, which did not use Twitter information. The STGAM/Twitter model can be generalized to other applications of event modeling where unstructured text is available.","PeriodicalId":199734,"journal":{"name":"2012 IEEE International Conference on Intelligence and Security Informatics","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"85","resultStr":"{\"title\":\"Spatio-temporal modeling of criminal incidents using geographic, demographic, and twitter-derived information\",\"authors\":\"Xiaofeng Wang, Donald E. Brown, M. Gerber\",\"doi\":\"10.1109/ISI.2012.6284088\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Personal and property crimes create large economic losses within the United States. To prevent crimes, law enforcement agencies model the spatio-temporal pattern of criminal incidents. In this paper, we present a new modeling process that combines two of our recently developed approaches for modeling criminal incidents. The first component of the process is the spatio-temporal generalized additive model (STGAM), which predicts the probability of criminal activity at a given location and time using a feature-based approach. The second component involves textual analysis. In our experiments, we automatically analyzed Twitter posts, which provide a rich, event-based context for criminal incidents. In addition, we describe a new feature selection method to identify important features. We applied our new model to actual criminal incidents in Charlottesville, Virginia. Our results indicate that the STGAM/Twitter model outperforms our previous STGAM model, which did not use Twitter information. The STGAM/Twitter model can be generalized to other applications of event modeling where unstructured text is available.\",\"PeriodicalId\":199734,\"journal\":{\"name\":\"2012 IEEE International Conference on Intelligence and Security Informatics\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"85\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE International Conference on Intelligence and Security Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISI.2012.6284088\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Conference on Intelligence and Security Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISI.2012.6284088","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 85

摘要

人身和财产犯罪在美国造成了巨大的经济损失。为了预防犯罪,执法机构对犯罪事件的时空格局进行建模。在本文中,我们提出了一种新的建模过程,它结合了我们最近开发的两种建模犯罪事件的方法。该过程的第一个组成部分是时空广义加性模型(STGAM),该模型使用基于特征的方法预测给定地点和时间内犯罪活动的概率。第二个部分涉及文本分析。在我们的实验中,我们自动分析Twitter帖子,这些帖子为犯罪事件提供了丰富的、基于事件的上下文。此外,我们还描述了一种新的特征选择方法来识别重要特征。我们将新模型应用于弗吉尼亚州夏洛茨维尔的实际犯罪事件。我们的结果表明,STGAM/Twitter模型优于之前不使用Twitter信息的STGAM模型。STGAM/Twitter模型可以推广到其他可以使用非结构化文本的事件建模应用程序。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Spatio-temporal modeling of criminal incidents using geographic, demographic, and twitter-derived information
Personal and property crimes create large economic losses within the United States. To prevent crimes, law enforcement agencies model the spatio-temporal pattern of criminal incidents. In this paper, we present a new modeling process that combines two of our recently developed approaches for modeling criminal incidents. The first component of the process is the spatio-temporal generalized additive model (STGAM), which predicts the probability of criminal activity at a given location and time using a feature-based approach. The second component involves textual analysis. In our experiments, we automatically analyzed Twitter posts, which provide a rich, event-based context for criminal incidents. In addition, we describe a new feature selection method to identify important features. We applied our new model to actual criminal incidents in Charlottesville, Virginia. Our results indicate that the STGAM/Twitter model outperforms our previous STGAM model, which did not use Twitter information. The STGAM/Twitter model can be generalized to other applications of event modeling where unstructured text is available.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Detecting criminal networks: SNA models are compared to proprietary models Securing cyberspace: Identifying key actors in hacker communities Emergency decision support using an agent-based modeling approach Payment card fraud: Challenges and solutions Extracting action knowledge in security informatics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1