Ni Putu Nanik Hendayanti, Gusti Ayu Made Arna Putri, M. Nurhidayati
{"title":"Ketepatan Klasifikasi Penerima Beasiswa STMIK STIKOM Bali dengan Hybrid Self Organizing Maps dan Algoritma K-Mean","authors":"Ni Putu Nanik Hendayanti, Gusti Ayu Made Arna Putri, M. Nurhidayati","doi":"10.30812/VARIAN.V2I1.316","DOIUrl":null,"url":null,"abstract":"Data Mining adalah penemuan informasi baru dengan mencari pola atau aturan tertentu dari sejumlah data yang sangat besar. Salah satu teknik yang dikenal dalam Data Mining yaitu clustering. Pengertian clustering dalam Data Mining adalah pengelompokan sejumlah data atau objek ke dalam cluster (group) sehingga setiap di lama cluster tersebut akan berisi data yang semirip mungkin dan berbeda dengan objek dalam cluster yang lain. Salah satu metode klasifiaksi atau clustering adalah Self Organizing Maps (SOM). SOM merupakan metode artificial neural network yang digunakan untuk mengelompokkan (clustering) data berdasarkan karakteristik/fitur-fitur data. Metode pengelompokan yang menggunakan konsep jarak dan memiliki karakteristik yang hampir sama dengan SOM yaitu metode K-means. Penelitian ini bertujuan untuk mengembangkan suatu metode yang merupakan hybrid dari SOM dan K-means yang digunakan untuk menentukan ketepatan suatu klasifikasi. Sebelum diujikan pada data asli, metode hybrid SOM dan K-Means diujikan lebih dulu pada data benchmark sehingga dapat diketahui berapa persen ketepan yang dihasilkan. Kemudian dilanjutkan dengan penerapan metode hybrid SOM dan K-means pada data penerimaan beasiswa di STMIK STIKOM Bali. Penelitian ini bertujuan untuk menentukan ketepatan klasifikasi penerima beasiswa STMIK STIKOM Bali dengan metode hybrid SOM dan K-means. Hasil penelitian menunjukkan bahwa metode Kmeans dan SOM memberikan hasil yang sama yang akibatnya metode SOM-Kmeans juga memberikan hasil yang sama. Alasannya, metode SOM-Kmeans menggunakan nilai centroid dari hasil SOM, dan hasil yang diperoleh pada metode Kmean memiliki hasil yang sama dengan SOM akibatnya metode SOM-Kmeans menghasilkan hasil yang sama dengan kedua metode sebelumnya.","PeriodicalId":188119,"journal":{"name":"Jurnal Varian","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Varian","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30812/VARIAN.V2I1.316","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

数据挖掘是通过搜索大量数据的特定模式或规则来发现新的信息。数据挖掘中已知的技术之一是对的。挖掘数据中的集群理解是将大量的数据或对象分组成集群(组),这样在集群中的每个集群都将尽可能地包含与其他集群中的对象相同和不同的数据。一个分类或集合的方法是自我组织映射(SOM)。SOM是一种人工神经网络,用于根据数据特征/特征对数据进行分组。一种使用距离概念的聚能方法,其特点与SOM几乎相同,即k -手段。这项研究的目的是开发一种具有SOM和K-means的混合方法,用来确定分类的准确性。在对原始数据进行测试之前,混合SOM和k -手段已经对benchmark数据进行了验证,因此我们知道其强度是多少。然后采用混合SOM方法和k -手段在STMIK STIKOM上获得奖学金。这项研究旨在确定STMIK sticom Bali奖学金获得者与混合SOM和k -手段的分类准确。研究表明,哈勃和SOM的结果是一样的。原因是,SOM- kpenh方法使用了来自SOM的质心值,而k均值方法的结果与SOM的结果是一样的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Ketepatan Klasifikasi Penerima Beasiswa STMIK STIKOM Bali dengan Hybrid Self Organizing Maps dan Algoritma K-Mean
Data Mining adalah penemuan informasi baru dengan mencari pola atau aturan tertentu dari sejumlah data yang sangat besar. Salah satu teknik yang dikenal dalam Data Mining yaitu clustering. Pengertian clustering dalam Data Mining adalah pengelompokan sejumlah data atau objek ke dalam cluster (group) sehingga setiap di lama cluster tersebut akan berisi data yang semirip mungkin dan berbeda dengan objek dalam cluster yang lain. Salah satu metode klasifiaksi atau clustering adalah Self Organizing Maps (SOM). SOM merupakan metode artificial neural network yang digunakan untuk mengelompokkan (clustering) data berdasarkan karakteristik/fitur-fitur data. Metode pengelompokan yang menggunakan konsep jarak dan memiliki karakteristik yang hampir sama dengan SOM yaitu metode K-means. Penelitian ini bertujuan untuk mengembangkan suatu metode yang merupakan hybrid dari SOM dan K-means yang digunakan untuk menentukan ketepatan suatu klasifikasi. Sebelum diujikan pada data asli, metode hybrid SOM dan K-Means diujikan lebih dulu pada data benchmark sehingga dapat diketahui berapa persen ketepan yang dihasilkan. Kemudian dilanjutkan dengan penerapan metode hybrid SOM dan K-means pada data penerimaan beasiswa di STMIK STIKOM Bali. Penelitian ini bertujuan untuk menentukan ketepatan klasifikasi penerima beasiswa STMIK STIKOM Bali dengan metode hybrid SOM dan K-means. Hasil penelitian menunjukkan bahwa metode Kmeans dan SOM memberikan hasil yang sama yang akibatnya metode SOM-Kmeans juga memberikan hasil yang sama. Alasannya, metode SOM-Kmeans menggunakan nilai centroid dari hasil SOM, dan hasil yang diperoleh pada metode Kmean memiliki hasil yang sama dengan SOM akibatnya metode SOM-Kmeans menghasilkan hasil yang sama dengan kedua metode sebelumnya.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Application of Principal Component Regression in Analyzing Factors Affecting Human Development Index Impact of SST Anomalies on Coral Reefs Damage Based on Copula Analysis The NADI Mathematical Model on the Danger Level of the Bili-Bili Dam Regression Model of Land Area and Amount of Production to the Selling Price of Corn K-Means – Resilient Backpropagation Neural Network in Predicting Poverty Levels
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1