人工智能、情商和客户智能这三驾马车

Manish Sharma, Shikha N. Khera, P. B. Sharma
{"title":"人工智能、情商和客户智能这三驾马车","authors":"Manish Sharma, Shikha N. Khera, P. B. Sharma","doi":"10.1504/IJSCCPS.2019.100195","DOIUrl":null,"url":null,"abstract":"Emotional intelligence is to recognise emotions and emotions can be recognised by analysing face. Face reflects emotions, and thus facial images can help to identify emotions. Emotions recognition can help in conducting qualitative market research techniques like focus groups; in-depth interviews and other which can be used to generate customer intelligence. This paper provides a cross-disciplinary view of Intelligence. This paper proposes a machine learning-based model to accomplish the task of identifying emotions from given facial images. This paper uses a public database and divides the images into four groups. The feature extraction has been done by principal component analysis and the feature selection by fisher discriminant ratio. The classification has been done by support vector machine using k cross-validation. The accuracy, specificity and sensitivity are encouraging. The average accuracy is 0.84","PeriodicalId":220482,"journal":{"name":"Int. J. Soc. Comput. Cyber Phys. Syst.","volume":"294 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The troika of artificial intelligence, emotional intelligence and customer intelligence\",\"authors\":\"Manish Sharma, Shikha N. Khera, P. B. Sharma\",\"doi\":\"10.1504/IJSCCPS.2019.100195\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Emotional intelligence is to recognise emotions and emotions can be recognised by analysing face. Face reflects emotions, and thus facial images can help to identify emotions. Emotions recognition can help in conducting qualitative market research techniques like focus groups; in-depth interviews and other which can be used to generate customer intelligence. This paper provides a cross-disciplinary view of Intelligence. This paper proposes a machine learning-based model to accomplish the task of identifying emotions from given facial images. This paper uses a public database and divides the images into four groups. The feature extraction has been done by principal component analysis and the feature selection by fisher discriminant ratio. The classification has been done by support vector machine using k cross-validation. The accuracy, specificity and sensitivity are encouraging. The average accuracy is 0.84\",\"PeriodicalId\":220482,\"journal\":{\"name\":\"Int. J. Soc. Comput. Cyber Phys. Syst.\",\"volume\":\"294 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Soc. Comput. Cyber Phys. Syst.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/IJSCCPS.2019.100195\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Soc. Comput. Cyber Phys. Syst.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJSCCPS.2019.100195","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

情商是识别情绪的能力,而情绪可以通过分析面部来识别。面部反映情绪,因此面部图像可以帮助识别情绪。情绪识别可以帮助进行定性市场研究技术,如焦点小组;深度访谈和其他可以用来产生客户情报的方法。这篇论文提供了智能的跨学科观点。本文提出了一种基于机器学习的模型来完成从给定的面部图像中识别情绪的任务。本文使用公共数据库,将图像分为四组。利用主成分分析进行特征提取,利用fisher判别比进行特征选择。使用k交叉验证的支持向量机完成了分类。其准确性、特异性和敏感性令人鼓舞。平均准确率为0.84
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The troika of artificial intelligence, emotional intelligence and customer intelligence
Emotional intelligence is to recognise emotions and emotions can be recognised by analysing face. Face reflects emotions, and thus facial images can help to identify emotions. Emotions recognition can help in conducting qualitative market research techniques like focus groups; in-depth interviews and other which can be used to generate customer intelligence. This paper provides a cross-disciplinary view of Intelligence. This paper proposes a machine learning-based model to accomplish the task of identifying emotions from given facial images. This paper uses a public database and divides the images into four groups. The feature extraction has been done by principal component analysis and the feature selection by fisher discriminant ratio. The classification has been done by support vector machine using k cross-validation. The accuracy, specificity and sensitivity are encouraging. The average accuracy is 0.84
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Detecting malicious users in the social networks using machine learning approach Privacy-preserving targeted online advertising Cyber-squatting: a cyber crime more than an unethical act The troika of artificial intelligence, emotional intelligence and customer intelligence Implementation of an efficient and intelligent Indian maritime borderline alert system using IoT
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1