低温辅助磨料水射流加工AISI D2钢的性能及表面评价特征

N. Yuvaraj, M. Kumar
{"title":"低温辅助磨料水射流加工AISI D2钢的性能及表面评价特征","authors":"N. Yuvaraj, M. Kumar","doi":"10.4018/978-1-5225-6161-3.CH010","DOIUrl":null,"url":null,"abstract":"The chapter reports on the investigation of cryogenic-assisted abrasive water jet (CAAWJ) machining of AISI D2 steel with varying the jet impact angles and abrasive mesh sizes. The performance measurement is considered in this study such as depth of penetration and taper ratio. Also, the surface integrity characteristics are considered in the present study such as abrasive contamination, surface topography, XRD peaks, residual stress, and micro hardness. The CAAWJ machining process improves the performance measurement such as higher depth of penetration and lower taper ratio for the machining of D2 steel. Also, the CAAWJ cut surface consists of better surface integrity features over the AWJ cut surface. The phase transformation effect of target material under cryogenic cooling helps to turn the mode of the material removal mechanism from ductile to brittle erosion process and yield a better performance. The results also indicate that the oblique jet impact angles have been produced better performance characteristics than the jet impact angle of 90o at room temperature.","PeriodicalId":443385,"journal":{"name":"Non-Conventional Machining in Modern Manufacturing Systems","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Performance and Surface Evaluation Characteristics on Cryogenic-Assisted Abrasive Water Jet Machining of AISI D2 Steel\",\"authors\":\"N. Yuvaraj, M. Kumar\",\"doi\":\"10.4018/978-1-5225-6161-3.CH010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The chapter reports on the investigation of cryogenic-assisted abrasive water jet (CAAWJ) machining of AISI D2 steel with varying the jet impact angles and abrasive mesh sizes. The performance measurement is considered in this study such as depth of penetration and taper ratio. Also, the surface integrity characteristics are considered in the present study such as abrasive contamination, surface topography, XRD peaks, residual stress, and micro hardness. The CAAWJ machining process improves the performance measurement such as higher depth of penetration and lower taper ratio for the machining of D2 steel. Also, the CAAWJ cut surface consists of better surface integrity features over the AWJ cut surface. The phase transformation effect of target material under cryogenic cooling helps to turn the mode of the material removal mechanism from ductile to brittle erosion process and yield a better performance. The results also indicate that the oblique jet impact angles have been produced better performance characteristics than the jet impact angle of 90o at room temperature.\",\"PeriodicalId\":443385,\"journal\":{\"name\":\"Non-Conventional Machining in Modern Manufacturing Systems\",\"volume\":\"46 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Non-Conventional Machining in Modern Manufacturing Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/978-1-5225-6161-3.CH010\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Non-Conventional Machining in Modern Manufacturing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/978-1-5225-6161-3.CH010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本章研究了低温辅助磨料水射流(CAAWJ)在不同射流冲击角和磨料网尺寸下加工AISI D2钢的工艺。本研究考虑了穿透深度和锥度比等性能测量。此外,本研究还考虑了表面完整性特征,如磨料污染、表面形貌、XRD峰、残余应力和显微硬度。CAAWJ加工工艺提高了D2钢的切削深度和锥度比等性能指标。此外,CAAWJ切割表面比AWJ切割表面具有更好的表面完整性特征。目标材料在低温冷却下的相变效应有助于将材料的去除机制模式从韧性侵蚀过程转变为脆性侵蚀过程,从而获得更好的性能。结果还表明,在室温下,倾斜射流冲击角比90°射流冲击角产生了更好的性能特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Performance and Surface Evaluation Characteristics on Cryogenic-Assisted Abrasive Water Jet Machining of AISI D2 Steel
The chapter reports on the investigation of cryogenic-assisted abrasive water jet (CAAWJ) machining of AISI D2 steel with varying the jet impact angles and abrasive mesh sizes. The performance measurement is considered in this study such as depth of penetration and taper ratio. Also, the surface integrity characteristics are considered in the present study such as abrasive contamination, surface topography, XRD peaks, residual stress, and micro hardness. The CAAWJ machining process improves the performance measurement such as higher depth of penetration and lower taper ratio for the machining of D2 steel. Also, the CAAWJ cut surface consists of better surface integrity features over the AWJ cut surface. The phase transformation effect of target material under cryogenic cooling helps to turn the mode of the material removal mechanism from ductile to brittle erosion process and yield a better performance. The results also indicate that the oblique jet impact angles have been produced better performance characteristics than the jet impact angle of 90o at room temperature.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Non-Conventional Technologies Selection FEM-ANN Sequential Modelling of Laser Transmission Welding for Prediction of Weld Pool Dimensions Finite Element Analysis of Tool Wear in Hot Machining Process Performance and Surface Evaluation Characteristics on Cryogenic-Assisted Abrasive Water Jet Machining of AISI D2 Steel Recent Developments in Wire Electrical Discharge Machining
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1