基于显著性的图像搜索可视化

Jiajie Hu, Bin Jin, Weiyao Lin, Jun Huang, Hangzai Luo, Zhenzhong Chen, Hongxiang Li
{"title":"基于显著性的图像搜索可视化","authors":"Jiajie Hu, Bin Jin, Weiyao Lin, Jun Huang, Hangzai Luo, Zhenzhong Chen, Hongxiang Li","doi":"10.1109/MMSP.2011.6093833","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a novel algorithm for improving and visualizing image search results. The proposed algorithm improves user's image search experience by three steps: (1) re-rank the initial image search results by the random walk refinement based on visual consistency and saliency cues, (2) project the re-ranked images into a 2-dimentional panel according to their saliency information and correlations, (3) detect and extract the saliency regions in each image for final visualization. To evaluate the performance of our algorithm, user study has been conducted. Experimental results demonstrate that our visualization algorithm provides more pleasing image search experience than the conventional image search methods.","PeriodicalId":214459,"journal":{"name":"2011 IEEE 13th International Workshop on Multimedia Signal Processing","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Saliency-based visualization for image search\",\"authors\":\"Jiajie Hu, Bin Jin, Weiyao Lin, Jun Huang, Hangzai Luo, Zhenzhong Chen, Hongxiang Li\",\"doi\":\"10.1109/MMSP.2011.6093833\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a novel algorithm for improving and visualizing image search results. The proposed algorithm improves user's image search experience by three steps: (1) re-rank the initial image search results by the random walk refinement based on visual consistency and saliency cues, (2) project the re-ranked images into a 2-dimentional panel according to their saliency information and correlations, (3) detect and extract the saliency regions in each image for final visualization. To evaluate the performance of our algorithm, user study has been conducted. Experimental results demonstrate that our visualization algorithm provides more pleasing image search experience than the conventional image search methods.\",\"PeriodicalId\":214459,\"journal\":{\"name\":\"2011 IEEE 13th International Workshop on Multimedia Signal Processing\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE 13th International Workshop on Multimedia Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MMSP.2011.6093833\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE 13th International Workshop on Multimedia Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MMSP.2011.6093833","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们提出了一种改进和可视化图像搜索结果的新算法。该算法通过三个步骤提高用户的图像搜索体验:(1)通过基于视觉一致性和显著性线索的随机行走细化对初始图像搜索结果进行重新排序;(2)根据图像的显著性信息和相关性将重新排序的图像投影到二维面板中;(3)检测并提取每个图像中的显著性区域以实现最终的可视化。为了评估我们算法的性能,我们进行了用户研究。实验结果表明,该可视化算法比传统的图像搜索方法提供了更令人满意的图像搜索体验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Saliency-based visualization for image search
In this paper, we propose a novel algorithm for improving and visualizing image search results. The proposed algorithm improves user's image search experience by three steps: (1) re-rank the initial image search results by the random walk refinement based on visual consistency and saliency cues, (2) project the re-ranked images into a 2-dimentional panel according to their saliency information and correlations, (3) detect and extract the saliency regions in each image for final visualization. To evaluate the performance of our algorithm, user study has been conducted. Experimental results demonstrate that our visualization algorithm provides more pleasing image search experience than the conventional image search methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Separation of speech sources using an Acoustic Vector Sensor Strategies for orca call retrieval to support collaborative annotation of a large archive Recognizing actions using salient features Region of interest determination using human computation Image super-resolution via feature-based affine transform
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1