评估帕金森病患者平衡康复改善的姿势控制模型

Z. Rahmati, S. Behzadipour, A. Schouten, G. Taghizadeh
{"title":"评估帕金森病患者平衡康复改善的姿势控制模型","authors":"Z. Rahmati, S. Behzadipour, A. Schouten, G. Taghizadeh","doi":"10.1109/BIOROB.2018.8487884","DOIUrl":null,"url":null,"abstract":"Studies have shown that balance and mobility in people with Parkinson's disease (PD) can improve through rehabilitation interventions. However, until now no quantitative method investigated how these patients improve their balance control. In this study, a single inverted pendulum model with PID controller was used to describe the improvement of forty PD patients after a 12-session therapy program, and to compare their balance with twenty healthy subjects. The Center of Pressure (COP) data were recorded in seven sensory conditions - on rigid and foam surface, each with eyes open and closed, and with visual disturbance; and stance on rigid surface with attached vibrator to the Achilles tendons. From COP data four Stabilogram Diffusion Function (SDF) measures were extracted. In order to find the appropriate model parameters (three control parameters and a noise gain) from the SDF measures, first model simulations were performed to tune an artificial neural network (ANN) which relates the SDF measures to the PID parameters, and second the trained ANN was used to find the suitable PID model parameters from the experimentally recorded SDF measures. Statistical analysis revealed that patients had lower control parameters and noise gain than healthy subjects; confirming reduced control ability and sensory information in PDs. Balance rehabilitation improved the patients' clinical scores, which is reflected in the increased control parameters (particularly in foam tasks), and noise gain (in tasks on rigid surface). The presented method provides a good and sensitive measure to describe functional balance and mobility in PD.","PeriodicalId":382522,"journal":{"name":"2018 7th IEEE International Conference on Biomedical Robotics and Biomechatronics (Biorob)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A Postural Control Model to Assess the Improvement of Balance Rehabilitation in Parkinson's Disease\",\"authors\":\"Z. Rahmati, S. Behzadipour, A. Schouten, G. Taghizadeh\",\"doi\":\"10.1109/BIOROB.2018.8487884\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Studies have shown that balance and mobility in people with Parkinson's disease (PD) can improve through rehabilitation interventions. However, until now no quantitative method investigated how these patients improve their balance control. In this study, a single inverted pendulum model with PID controller was used to describe the improvement of forty PD patients after a 12-session therapy program, and to compare their balance with twenty healthy subjects. The Center of Pressure (COP) data were recorded in seven sensory conditions - on rigid and foam surface, each with eyes open and closed, and with visual disturbance; and stance on rigid surface with attached vibrator to the Achilles tendons. From COP data four Stabilogram Diffusion Function (SDF) measures were extracted. In order to find the appropriate model parameters (three control parameters and a noise gain) from the SDF measures, first model simulations were performed to tune an artificial neural network (ANN) which relates the SDF measures to the PID parameters, and second the trained ANN was used to find the suitable PID model parameters from the experimentally recorded SDF measures. Statistical analysis revealed that patients had lower control parameters and noise gain than healthy subjects; confirming reduced control ability and sensory information in PDs. Balance rehabilitation improved the patients' clinical scores, which is reflected in the increased control parameters (particularly in foam tasks), and noise gain (in tasks on rigid surface). The presented method provides a good and sensitive measure to describe functional balance and mobility in PD.\",\"PeriodicalId\":382522,\"journal\":{\"name\":\"2018 7th IEEE International Conference on Biomedical Robotics and Biomechatronics (Biorob)\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 7th IEEE International Conference on Biomedical Robotics and Biomechatronics (Biorob)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIOROB.2018.8487884\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 7th IEEE International Conference on Biomedical Robotics and Biomechatronics (Biorob)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIOROB.2018.8487884","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

研究表明,通过康复干预可以改善帕金森病患者的平衡和活动能力。然而,到目前为止,还没有定量的方法研究这些患者如何改善他们的平衡控制。本研究采用带PID控制器的单倒立摆模型描述40例PD患者在12个疗程的治疗方案后的改善情况,并与20名健康受试者进行比较。在刚性表面和泡沫表面上记录7种感觉条件下的压力中心(COP)数据,每一种情况下都有眼睛睁开和闭上,并有视觉障碍;在刚性表面站立,并将振动器连接到跟腱上。从COP数据中提取了四个稳定图扩散函数(SDF)测度。为了从SDF测量中找到合适的模型参数(三个控制参数和一个噪声增益),首先进行模型仿真,调整人工神经网络(ANN),将SDF测量与PID参数联系起来,然后使用训练好的ANN从实验记录的SDF测量中找到合适的PID模型参数。统计分析显示,患者的控制参数和噪声增益均低于健康受试者;证实pd患者的控制能力和感觉信息下降。平衡康复提高了患者的临床评分,这反映在控制参数的增加(特别是在泡沫任务中)和噪声增益(在刚性表面任务中)。该方法为描述PD患者的功能平衡和活动能力提供了一种良好而灵敏的测量方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Postural Control Model to Assess the Improvement of Balance Rehabilitation in Parkinson's Disease
Studies have shown that balance and mobility in people with Parkinson's disease (PD) can improve through rehabilitation interventions. However, until now no quantitative method investigated how these patients improve their balance control. In this study, a single inverted pendulum model with PID controller was used to describe the improvement of forty PD patients after a 12-session therapy program, and to compare their balance with twenty healthy subjects. The Center of Pressure (COP) data were recorded in seven sensory conditions - on rigid and foam surface, each with eyes open and closed, and with visual disturbance; and stance on rigid surface with attached vibrator to the Achilles tendons. From COP data four Stabilogram Diffusion Function (SDF) measures were extracted. In order to find the appropriate model parameters (three control parameters and a noise gain) from the SDF measures, first model simulations were performed to tune an artificial neural network (ANN) which relates the SDF measures to the PID parameters, and second the trained ANN was used to find the suitable PID model parameters from the experimentally recorded SDF measures. Statistical analysis revealed that patients had lower control parameters and noise gain than healthy subjects; confirming reduced control ability and sensory information in PDs. Balance rehabilitation improved the patients' clinical scores, which is reflected in the increased control parameters (particularly in foam tasks), and noise gain (in tasks on rigid surface). The presented method provides a good and sensitive measure to describe functional balance and mobility in PD.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Insect-Inspired Body Size Learning Model on a Humanoid Robot Yaw Postural Perturbation Through Robotic Platform: Aging Effects on Muscle Synergies Optimization-Based Analysis of a Cartwheel Quantifying Human Autonomy Recovery During Ankle Robot-Assisted Reversal of Foot Drop After Stroke ExoBoot, a Soft Inflatable Robotic Boot to Assist Ankle During Walking: Design, Characterization and Preliminary Tests
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1