{"title":"极化可观测性不在乎","authors":"H. Arts, Michel Berkelaar, C. V. Eijk","doi":"10.5555/244522.244938","DOIUrl":null,"url":null,"abstract":"A new method is presented to compute the exact observability don't cares (ODC) for multilevel combinational circuits. A new mathematical concept, called polarization, is introduced. Polarization captures the essence of ODC calculation on the otherwise difficult points of reconvergence. It makes it possible to derive the ODC of a node from the ODCs of its fanouts with a very simple formula. Experimental results for the 39 largest MCNC benchmark examples show that the method is able to compute the ODC set (expressed as a Boolean network) for all but 1 circuit in at most a few seconds.","PeriodicalId":408850,"journal":{"name":"Proceedings of International Conference on Computer Aided Design","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Polarized observability don't cares\",\"authors\":\"H. Arts, Michel Berkelaar, C. V. Eijk\",\"doi\":\"10.5555/244522.244938\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new method is presented to compute the exact observability don't cares (ODC) for multilevel combinational circuits. A new mathematical concept, called polarization, is introduced. Polarization captures the essence of ODC calculation on the otherwise difficult points of reconvergence. It makes it possible to derive the ODC of a node from the ODCs of its fanouts with a very simple formula. Experimental results for the 39 largest MCNC benchmark examples show that the method is able to compute the ODC set (expressed as a Boolean network) for all but 1 circuit in at most a few seconds.\",\"PeriodicalId\":408850,\"journal\":{\"name\":\"Proceedings of International Conference on Computer Aided Design\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1996-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of International Conference on Computer Aided Design\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5555/244522.244938\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of International Conference on Computer Aided Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5555/244522.244938","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A new method is presented to compute the exact observability don't cares (ODC) for multilevel combinational circuits. A new mathematical concept, called polarization, is introduced. Polarization captures the essence of ODC calculation on the otherwise difficult points of reconvergence. It makes it possible to derive the ODC of a node from the ODCs of its fanouts with a very simple formula. Experimental results for the 39 largest MCNC benchmark examples show that the method is able to compute the ODC set (expressed as a Boolean network) for all but 1 circuit in at most a few seconds.