面向深度学习计算的可配置多精度浮点乘法器架构设计

Pei-Hsuan Kuo, Yu-Hsiang Huang, Juinn-Dar Huang
{"title":"面向深度学习计算的可配置多精度浮点乘法器架构设计","authors":"Pei-Hsuan Kuo, Yu-Hsiang Huang, Juinn-Dar Huang","doi":"10.1109/AICAS57966.2023.10168572","DOIUrl":null,"url":null,"abstract":"The increasing AI applications demands efficient computing capabilities to support a huge amount of calculations. Among the related arithmetic operations, multiplication is an indispensable part in most of deep learning applications. To support computing in different precisions demanded by various applications, it is essential for a multiplier architecture to meet the multi-precision demand while still achieving high utilization of the multiplication array and power efficiency. In this paper, a configurable multi-precision FP multiplier architecture with minimized redundant bits is presented. It can execute 16× FP8 operations, or 8× brain-floating-point (BF16) operations, or 4× half-precision (FP16) operations, or 1× single-precision (FP32) operation every cycle while maintaining a 100% multiplication hardware utilization ratio. Moreover, the computing results can also be represented in higher precision formats for succeeding high-precision computations. The proposed design has been implemented using the TSMC 40nm process with 1GHz clock frequency and consumes only 16.78mW on average. Compared to existing multi-precision FP multiplier architectures, the proposed design achieves the highest hardware utilization ratio with only 4.9K logic gates in the multiplication array. It also achieves high energy efficiencies of 1212.1, 509.6, 207.3, and 42.6 GFLOPS/W at FP8, BF16, FP16 and FP32 modes, respectively.","PeriodicalId":296649,"journal":{"name":"2023 IEEE 5th International Conference on Artificial Intelligence Circuits and Systems (AICAS)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Configurable Multi-Precision Floating-Point Multiplier Architecture Design for Computation in Deep Learning\",\"authors\":\"Pei-Hsuan Kuo, Yu-Hsiang Huang, Juinn-Dar Huang\",\"doi\":\"10.1109/AICAS57966.2023.10168572\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The increasing AI applications demands efficient computing capabilities to support a huge amount of calculations. Among the related arithmetic operations, multiplication is an indispensable part in most of deep learning applications. To support computing in different precisions demanded by various applications, it is essential for a multiplier architecture to meet the multi-precision demand while still achieving high utilization of the multiplication array and power efficiency. In this paper, a configurable multi-precision FP multiplier architecture with minimized redundant bits is presented. It can execute 16× FP8 operations, or 8× brain-floating-point (BF16) operations, or 4× half-precision (FP16) operations, or 1× single-precision (FP32) operation every cycle while maintaining a 100% multiplication hardware utilization ratio. Moreover, the computing results can also be represented in higher precision formats for succeeding high-precision computations. The proposed design has been implemented using the TSMC 40nm process with 1GHz clock frequency and consumes only 16.78mW on average. Compared to existing multi-precision FP multiplier architectures, the proposed design achieves the highest hardware utilization ratio with only 4.9K logic gates in the multiplication array. It also achieves high energy efficiencies of 1212.1, 509.6, 207.3, and 42.6 GFLOPS/W at FP8, BF16, FP16 and FP32 modes, respectively.\",\"PeriodicalId\":296649,\"journal\":{\"name\":\"2023 IEEE 5th International Conference on Artificial Intelligence Circuits and Systems (AICAS)\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE 5th International Conference on Artificial Intelligence Circuits and Systems (AICAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AICAS57966.2023.10168572\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE 5th International Conference on Artificial Intelligence Circuits and Systems (AICAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AICAS57966.2023.10168572","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

不断增加的人工智能应用需要高效的计算能力来支持大量的计算。在相关的算术运算中,乘法运算是大多数深度学习应用中不可或缺的一部分。为了支持各种应用所需的不同精度计算,乘法器架构必须满足多精度要求,同时还能实现乘法阵列的高利用率和功率效率。本文提出了一种冗余位最小化的可配置多精度FP乘法器结构。它可以在每个周期内执行16× FP8操作,或8×脑浮点(BF16)操作,或4×半精度(FP16)操作,或1×单精度(FP32)操作,同时保持100%的乘法硬件利用率。此外,计算结果还可以以更高的精度格式表示,以便后续的高精度计算。本设计采用台积电40nm制程,时钟频率为1GHz,平均功耗仅为16.78mW。与现有的多精度FP乘法器架构相比,该设计在乘法阵列中仅使用4.9K逻辑门,实现了最高的硬件利用率。它还在FP8、BF16、FP16和FP32模式下分别实现1212.1、509.6、207.3和42.6 GFLOPS/W的高能效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Configurable Multi-Precision Floating-Point Multiplier Architecture Design for Computation in Deep Learning
The increasing AI applications demands efficient computing capabilities to support a huge amount of calculations. Among the related arithmetic operations, multiplication is an indispensable part in most of deep learning applications. To support computing in different precisions demanded by various applications, it is essential for a multiplier architecture to meet the multi-precision demand while still achieving high utilization of the multiplication array and power efficiency. In this paper, a configurable multi-precision FP multiplier architecture with minimized redundant bits is presented. It can execute 16× FP8 operations, or 8× brain-floating-point (BF16) operations, or 4× half-precision (FP16) operations, or 1× single-precision (FP32) operation every cycle while maintaining a 100% multiplication hardware utilization ratio. Moreover, the computing results can also be represented in higher precision formats for succeeding high-precision computations. The proposed design has been implemented using the TSMC 40nm process with 1GHz clock frequency and consumes only 16.78mW on average. Compared to existing multi-precision FP multiplier architectures, the proposed design achieves the highest hardware utilization ratio with only 4.9K logic gates in the multiplication array. It also achieves high energy efficiencies of 1212.1, 509.6, 207.3, and 42.6 GFLOPS/W at FP8, BF16, FP16 and FP32 modes, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Synaptic metaplasticity with multi-level memristive devices Unsupervised Learning of Spike-Timing-Dependent Plasticity Based on a Neuromorphic Implementation A Fully Differential 4-Bit Analog Compute-In-Memory Architecture for Inference Application Convergent Waveform Relaxation Schemes for the Transient Analysis of Associative ReLU Arrays Performance Assessment of an Extremely Energy-Efficient Binary Neural Network Using Adiabatic Superconductor Devices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1