{"title":"通过CT和x线图像的分割和分类快速准确地识别COVID-19","authors":"A. Saygılı","doi":"10.35377/saucis...1309970","DOIUrl":null,"url":null,"abstract":"The COVID-19 pandemic, caused by a novel coronavirus, has become a global epidemic. Although the reverse transcription-polymerase chain reaction (RT-PCR) test is the current gold standard for detecting the virus, its low reliability has led to the use of CT and X-ray imaging in diagnostics. As limited vaccine availability necessitates rapid and accurate detection, this study applies k-means and fuzzy c-means segmentation to CT and X-ray images to classify COVID-19 cases as either diseased or healthy for CT scans and diseased, healthy, or non-COVID pneumonia for X-rays. Our research employs four open-access, widely-used datasets and is conducted in four stages: preprocessing, segmentation, feature extraction, and classification. During feature extraction, we employ the Gray-Level Co-Occurrence Matrix (GLCM), Local Binary Pattern (LBP), and Histogram of Oriented Gradients (HOG). In the classification process, our approach involves utilizing k-Nearest Neighbor (kNN), Support Vector Machines (SVM), and Extreme Learning Machines (ELM) techniques. Our research achieved a sensitivity rate exceeding 99%, which is higher than the 60-70% sensitivity rate of PCR tests. As a result, our study can serve as a decision support system that can help medical professionals make rapid and precise diagnoses with a high level of sensitivity.","PeriodicalId":257636,"journal":{"name":"Sakarya University Journal of Computer and Information Sciences","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rapid and Precise Identification of COVID-19 through Segmentation and Classification of CT and X-ray Images\",\"authors\":\"A. Saygılı\",\"doi\":\"10.35377/saucis...1309970\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The COVID-19 pandemic, caused by a novel coronavirus, has become a global epidemic. Although the reverse transcription-polymerase chain reaction (RT-PCR) test is the current gold standard for detecting the virus, its low reliability has led to the use of CT and X-ray imaging in diagnostics. As limited vaccine availability necessitates rapid and accurate detection, this study applies k-means and fuzzy c-means segmentation to CT and X-ray images to classify COVID-19 cases as either diseased or healthy for CT scans and diseased, healthy, or non-COVID pneumonia for X-rays. Our research employs four open-access, widely-used datasets and is conducted in four stages: preprocessing, segmentation, feature extraction, and classification. During feature extraction, we employ the Gray-Level Co-Occurrence Matrix (GLCM), Local Binary Pattern (LBP), and Histogram of Oriented Gradients (HOG). In the classification process, our approach involves utilizing k-Nearest Neighbor (kNN), Support Vector Machines (SVM), and Extreme Learning Machines (ELM) techniques. Our research achieved a sensitivity rate exceeding 99%, which is higher than the 60-70% sensitivity rate of PCR tests. As a result, our study can serve as a decision support system that can help medical professionals make rapid and precise diagnoses with a high level of sensitivity.\",\"PeriodicalId\":257636,\"journal\":{\"name\":\"Sakarya University Journal of Computer and Information Sciences\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sakarya University Journal of Computer and Information Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.35377/saucis...1309970\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sakarya University Journal of Computer and Information Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35377/saucis...1309970","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Rapid and Precise Identification of COVID-19 through Segmentation and Classification of CT and X-ray Images
The COVID-19 pandemic, caused by a novel coronavirus, has become a global epidemic. Although the reverse transcription-polymerase chain reaction (RT-PCR) test is the current gold standard for detecting the virus, its low reliability has led to the use of CT and X-ray imaging in diagnostics. As limited vaccine availability necessitates rapid and accurate detection, this study applies k-means and fuzzy c-means segmentation to CT and X-ray images to classify COVID-19 cases as either diseased or healthy for CT scans and diseased, healthy, or non-COVID pneumonia for X-rays. Our research employs four open-access, widely-used datasets and is conducted in four stages: preprocessing, segmentation, feature extraction, and classification. During feature extraction, we employ the Gray-Level Co-Occurrence Matrix (GLCM), Local Binary Pattern (LBP), and Histogram of Oriented Gradients (HOG). In the classification process, our approach involves utilizing k-Nearest Neighbor (kNN), Support Vector Machines (SVM), and Extreme Learning Machines (ELM) techniques. Our research achieved a sensitivity rate exceeding 99%, which is higher than the 60-70% sensitivity rate of PCR tests. As a result, our study can serve as a decision support system that can help medical professionals make rapid and precise diagnoses with a high level of sensitivity.