澳大利亚元古代氧化铁-铜-金矿床:综述及在昆士兰西北部Cloncurry地区的新成矿和找矿资料

P. Williams, P. Pollard
{"title":"澳大利亚元古代氧化铁-铜-金矿床:综述及在昆士兰西北部Cloncurry地区的新成矿和找矿资料","authors":"P. Williams, P. Pollard","doi":"10.2113/0100191","DOIUrl":null,"url":null,"abstract":"Enigmatic hydrothermal vein/breccia/replacement Cu-Au deposits with magnetite and/or hematite are well-represented in Australian 1850 Ma to 1500 Ma terrains and associated with different-aged synorogenic intrusions in the Tennant Creek Block (ca. 1850 Ma); the Gawler-Curnamona region (1640 Ma to 1590 Ma); and the Cloncurry district (Mount Isa Eastern Fold Belt, 1540 Ma to 1500 Ma with a possible earlier event at ca. 1600 Ma). No deposits are known to be coeval with various 1780 Ma to 1610 Ma anorogenic intrusions. Deposits are hosted by many different rock-types with varying metamorphic grade including granites and various supracrustal rocks. Depth of mineralization varied from many kilometers in semiductile crust (e.g., Cloncurry deposits) to very shallow (e.g., Olympic Dam). Ore deposition near Cloncurry occurred in brittle-ductile shear zones from geochemically variable and complex, CO2-rich, 300°C to 500°C, high salinity fluids with magmatic stable isotopic signatures. Recently published studies of a giant granitoidhosted magnetite vein complex at the Lightning Creek prospect (>1000 Mt magnetite) suggest it is a product of internal differentiation and endogenous Fe and Cu-rich hydrous-carbonic fluid phase generation within a quartz monzodiorite-monzogranite intrusion. Coupled with other field relationships, this points to a possible genetic relationship with intermediate (55 to 65 wt% SiO2) members of an alkaline and partly shoshonitic granitoid supersuite which appears to have both mantle and crustal source components from eNd evidence. In constrast, main-phase mineralization at Olympic Dam in the Gawler Craton is distinguished by hematite-phyllosilicate alteration and chalcopyrite-bornite-chalcocite zoning, reflecting fluid mixing in a high level (<250°C) system with a probable large component of meteoric water. Early high-temperature parageneses and fluid inclusions imply that the extensive hematitic breccias overprinted an older magnetite system which may have had similarities with those at Lightning Creek and Ernest Henry in the Cloncurry district.\n\nDeposits of this family are inherently difficult to find and evaluate as even within a single district, there is no reliable relationship between the location of ore and any specific combination of geophysical characteristics. Diverse alteration assemblages, geochemistry and physical characteristics suggest the deposits reflect the interaction of multi-sourced fluids with different host rocks in a wide range of geological environments. Recent discoveries and research in the Cloncurry district have extended the range of deposit models available and aid the development of a rudimentary classification in which economic and exploration characteristics can be linked to variations in the mechanisms and environments of ore formation.","PeriodicalId":206160,"journal":{"name":"Exploration and Mining Geology","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"64","resultStr":"{\"title\":\"Australian Proterozoic Iron Oxide-Cu-Au Deposits: An Overview with New Metallogenic and Exploration Data from the Cloncurry District, Northwest Queensland\",\"authors\":\"P. Williams, P. Pollard\",\"doi\":\"10.2113/0100191\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Enigmatic hydrothermal vein/breccia/replacement Cu-Au deposits with magnetite and/or hematite are well-represented in Australian 1850 Ma to 1500 Ma terrains and associated with different-aged synorogenic intrusions in the Tennant Creek Block (ca. 1850 Ma); the Gawler-Curnamona region (1640 Ma to 1590 Ma); and the Cloncurry district (Mount Isa Eastern Fold Belt, 1540 Ma to 1500 Ma with a possible earlier event at ca. 1600 Ma). No deposits are known to be coeval with various 1780 Ma to 1610 Ma anorogenic intrusions. Deposits are hosted by many different rock-types with varying metamorphic grade including granites and various supracrustal rocks. Depth of mineralization varied from many kilometers in semiductile crust (e.g., Cloncurry deposits) to very shallow (e.g., Olympic Dam). Ore deposition near Cloncurry occurred in brittle-ductile shear zones from geochemically variable and complex, CO2-rich, 300°C to 500°C, high salinity fluids with magmatic stable isotopic signatures. Recently published studies of a giant granitoidhosted magnetite vein complex at the Lightning Creek prospect (>1000 Mt magnetite) suggest it is a product of internal differentiation and endogenous Fe and Cu-rich hydrous-carbonic fluid phase generation within a quartz monzodiorite-monzogranite intrusion. Coupled with other field relationships, this points to a possible genetic relationship with intermediate (55 to 65 wt% SiO2) members of an alkaline and partly shoshonitic granitoid supersuite which appears to have both mantle and crustal source components from eNd evidence. In constrast, main-phase mineralization at Olympic Dam in the Gawler Craton is distinguished by hematite-phyllosilicate alteration and chalcopyrite-bornite-chalcocite zoning, reflecting fluid mixing in a high level (<250°C) system with a probable large component of meteoric water. Early high-temperature parageneses and fluid inclusions imply that the extensive hematitic breccias overprinted an older magnetite system which may have had similarities with those at Lightning Creek and Ernest Henry in the Cloncurry district.\\n\\nDeposits of this family are inherently difficult to find and evaluate as even within a single district, there is no reliable relationship between the location of ore and any specific combination of geophysical characteristics. Diverse alteration assemblages, geochemistry and physical characteristics suggest the deposits reflect the interaction of multi-sourced fluids with different host rocks in a wide range of geological environments. Recent discoveries and research in the Cloncurry district have extended the range of deposit models available and aid the development of a rudimentary classification in which economic and exploration characteristics can be linked to variations in the mechanisms and environments of ore formation.\",\"PeriodicalId\":206160,\"journal\":{\"name\":\"Exploration and Mining Geology\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"64\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Exploration and Mining Geology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2113/0100191\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Exploration and Mining Geology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2113/0100191","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 64

摘要

神秘的热液脉状/角砾岩/含磁铁矿和/或赤铁矿的替代型铜金矿床在澳大利亚1850 Ma至1500 Ma的地形中很有代表性,并与Tennant Creek地块(约1850 Ma)不同年龄的同生岩体有关;高勒-库纳莫纳地区(1640 ~ 1590 Ma);和Cloncurry地区(伊萨山东褶皱带,1540 Ma至1500 Ma,可能更早的事件发生在1600 Ma左右)。未发现与各种1780 ~ 1610 Ma造山岩体同时期的矿床。矿床由多种不同的岩石类型(包括花岗岩和各种表壳岩)承载,这些岩石具有不同的变质品位。矿化的深度各不相同,从半核地壳中的几公里(例如,Cloncurry矿床)到非常浅(例如,奥林匹克大坝)。Cloncurry附近的矿床产于地球化学多变而复杂的脆性-韧性剪切带,富含co2,温度300 ~ 500℃,高盐度流体,具有岩浆稳定同位素特征。最近发表的研究表明,在Lightning Creek远景区(>1000 Mt磁铁矿),一个巨型花岗岩磁铁矿脉状杂岩是石英二长花岗岩侵入体内部分异和内源性富铁和富铜的碳水流体相生成的产物。结合其他现场关系,这表明可能与碱性和部分玄武花岗岩类超套件的中间(55%至65% SiO2)成员有遗传关系,从eNd证据来看,该超套件似乎具有地幔和地壳来源成分。高勒克拉通奥林坝的主相矿化以赤铁矿—层状硅酸盐蚀变和黄铜矿—斑铜矿—辉铜矿分带为特征,反映了高水平(<250°C)系统的流体混合,可能含有大量的大气水。早期高温共生岩和流体包裹体表明,广泛的赤铁矿角砾岩覆盖了一个较老的磁铁矿系统,该系统可能与Cloncurry地区的Lightning Creek和Ernest Henry的磁铁矿系统相似。这类矿床本身就很难发现和评价,因为即使在一个地区内,矿石的位置与地球物理特征的任何具体组合之间也没有可靠的关系。不同的蚀变组合、地球化学和物理特征表明,矿床反映了多种地质环境下多源流体与不同寄主岩石的相互作用。最近在Cloncurry地区的发现和研究扩大了现有矿床模型的范围,并有助于发展一种基本分类,其中经济和勘探特征可以与成矿机制和环境的变化联系起来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Australian Proterozoic Iron Oxide-Cu-Au Deposits: An Overview with New Metallogenic and Exploration Data from the Cloncurry District, Northwest Queensland
Enigmatic hydrothermal vein/breccia/replacement Cu-Au deposits with magnetite and/or hematite are well-represented in Australian 1850 Ma to 1500 Ma terrains and associated with different-aged synorogenic intrusions in the Tennant Creek Block (ca. 1850 Ma); the Gawler-Curnamona region (1640 Ma to 1590 Ma); and the Cloncurry district (Mount Isa Eastern Fold Belt, 1540 Ma to 1500 Ma with a possible earlier event at ca. 1600 Ma). No deposits are known to be coeval with various 1780 Ma to 1610 Ma anorogenic intrusions. Deposits are hosted by many different rock-types with varying metamorphic grade including granites and various supracrustal rocks. Depth of mineralization varied from many kilometers in semiductile crust (e.g., Cloncurry deposits) to very shallow (e.g., Olympic Dam). Ore deposition near Cloncurry occurred in brittle-ductile shear zones from geochemically variable and complex, CO2-rich, 300°C to 500°C, high salinity fluids with magmatic stable isotopic signatures. Recently published studies of a giant granitoidhosted magnetite vein complex at the Lightning Creek prospect (>1000 Mt magnetite) suggest it is a product of internal differentiation and endogenous Fe and Cu-rich hydrous-carbonic fluid phase generation within a quartz monzodiorite-monzogranite intrusion. Coupled with other field relationships, this points to a possible genetic relationship with intermediate (55 to 65 wt% SiO2) members of an alkaline and partly shoshonitic granitoid supersuite which appears to have both mantle and crustal source components from eNd evidence. In constrast, main-phase mineralization at Olympic Dam in the Gawler Craton is distinguished by hematite-phyllosilicate alteration and chalcopyrite-bornite-chalcocite zoning, reflecting fluid mixing in a high level (<250°C) system with a probable large component of meteoric water. Early high-temperature parageneses and fluid inclusions imply that the extensive hematitic breccias overprinted an older magnetite system which may have had similarities with those at Lightning Creek and Ernest Henry in the Cloncurry district. Deposits of this family are inherently difficult to find and evaluate as even within a single district, there is no reliable relationship between the location of ore and any specific combination of geophysical characteristics. Diverse alteration assemblages, geochemistry and physical characteristics suggest the deposits reflect the interaction of multi-sourced fluids with different host rocks in a wide range of geological environments. Recent discoveries and research in the Cloncurry district have extended the range of deposit models available and aid the development of a rudimentary classification in which economic and exploration characteristics can be linked to variations in the mechanisms and environments of ore formation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Gold Potential of a Hidden Archean Fault Zone: The Case of the Cadillac–Larder Lake Fault Paleoproterozoic Age Relationships in the Three Bluffs Archean Iron Formation-Hosted Gold Deposit, Committee Bay Greenstone Belt, Nunavut, Canada The Geological Setting, Mineralogy, and Paragenesis of Gold-Bearing Polymetallic (Cu+Co+Ag+Au+Bi±Pb±Ni±U) Veins of the Merico-Ethel Property, Elk Lake, Northeastern Ontario, Canada Geophysical Case Study of Shallow and Deep Structures Based on Traditional and Modified Interpretation Methods: Application to Tectonic Studies and Mineral Exploration Fluid Inclusion and Stable Isotope Study of the Buffalo Gold Deposit, Red Lake Greenstone Belt, Northwestern Ontario, Canada
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1