{"title":"无源光阵列发生器","authors":"M. Taghizadeh, J. Turunen, B. Robertson","doi":"10.1364/optcomp.1991.me23","DOIUrl":null,"url":null,"abstract":"Recent progress in designing and manufacturing space-invariant optical array generators is described. We begin by demonstrating Dammann gratings [1] that generate even-numbered arrays as large as 128x128, and odd-numbered arrays of up to 201x201 spots. The concept of a hybrid hologram [2] is applied to the fabrication of array generators, and extremely high-efficiency (close to 90%) components are obtained. Several novel types of array generators with multiple phase levels are introduced. These can e.g. reconstruct arrays with different fan-out at different angles of incidence. The application of rigorous diffraction theory to design highly efficient and compact array generators is also discussed.","PeriodicalId":302010,"journal":{"name":"Optical Computing","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Passive Optical Array Generators\",\"authors\":\"M. Taghizadeh, J. Turunen, B. Robertson\",\"doi\":\"10.1364/optcomp.1991.me23\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent progress in designing and manufacturing space-invariant optical array generators is described. We begin by demonstrating Dammann gratings [1] that generate even-numbered arrays as large as 128x128, and odd-numbered arrays of up to 201x201 spots. The concept of a hybrid hologram [2] is applied to the fabrication of array generators, and extremely high-efficiency (close to 90%) components are obtained. Several novel types of array generators with multiple phase levels are introduced. These can e.g. reconstruct arrays with different fan-out at different angles of incidence. The application of rigorous diffraction theory to design highly efficient and compact array generators is also discussed.\",\"PeriodicalId\":302010,\"journal\":{\"name\":\"Optical Computing\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1992-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optical Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1364/optcomp.1991.me23\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1364/optcomp.1991.me23","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Recent progress in designing and manufacturing space-invariant optical array generators is described. We begin by demonstrating Dammann gratings [1] that generate even-numbered arrays as large as 128x128, and odd-numbered arrays of up to 201x201 spots. The concept of a hybrid hologram [2] is applied to the fabrication of array generators, and extremely high-efficiency (close to 90%) components are obtained. Several novel types of array generators with multiple phase levels are introduced. These can e.g. reconstruct arrays with different fan-out at different angles of incidence. The application of rigorous diffraction theory to design highly efficient and compact array generators is also discussed.