一种提高SIFT算法匹配效率的方法

Daixian Zhu, Xiaohua Wang
{"title":"一种提高SIFT算法匹配效率的方法","authors":"Daixian Zhu, Xiaohua Wang","doi":"10.1109/CISP.2009.5304375","DOIUrl":null,"url":null,"abstract":"Due to the good invariance of scale, rotation, illumination, SIFT (Scale Invariant Feature Transform) descriptor is commonly used in image matching. but its algorithm is complicated and computation time is long. To improve SIFT feature matching algorithm efficiency, the method of reducing similar measure matching cost is mentioned. Euclidean distance is replaced by the linearcombination of cityblock distance and chessboard distance, and reduce character point in calculating with results of part feature. The experimental results show that the algorithm can reduce the rate of time complexity and maintain robust quality at the same time, image matching efficiency is improved. Keywords-feature matching ; feature extraction; SIFT;","PeriodicalId":263281,"journal":{"name":"2009 2nd International Congress on Image and Signal Processing","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"A Method of Improving SIFT Algorithm Matching Efficiency\",\"authors\":\"Daixian Zhu, Xiaohua Wang\",\"doi\":\"10.1109/CISP.2009.5304375\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Due to the good invariance of scale, rotation, illumination, SIFT (Scale Invariant Feature Transform) descriptor is commonly used in image matching. but its algorithm is complicated and computation time is long. To improve SIFT feature matching algorithm efficiency, the method of reducing similar measure matching cost is mentioned. Euclidean distance is replaced by the linearcombination of cityblock distance and chessboard distance, and reduce character point in calculating with results of part feature. The experimental results show that the algorithm can reduce the rate of time complexity and maintain robust quality at the same time, image matching efficiency is improved. Keywords-feature matching ; feature extraction; SIFT;\",\"PeriodicalId\":263281,\"journal\":{\"name\":\"2009 2nd International Congress on Image and Signal Processing\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 2nd International Congress on Image and Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CISP.2009.5304375\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 2nd International Congress on Image and Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISP.2009.5304375","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

由于SIFT (scale Invariant Feature Transform,尺度不变特征变换)描述子具有良好的尺度、旋转、光照不变性,因此常用于图像匹配。但其算法复杂,计算时间长。为了提高SIFT特征匹配算法的效率,提出了降低相似测度匹配代价的方法。用街区距离和棋盘距离的线性组合代替欧氏距离,利用局部特征的结果减少计算中的特征点。实验结果表明,该算法在降低时间复杂度的同时,保持了图像的鲁棒性,提高了图像匹配效率。关键词:特征匹配;特征提取;筛选;
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Method of Improving SIFT Algorithm Matching Efficiency
Due to the good invariance of scale, rotation, illumination, SIFT (Scale Invariant Feature Transform) descriptor is commonly used in image matching. but its algorithm is complicated and computation time is long. To improve SIFT feature matching algorithm efficiency, the method of reducing similar measure matching cost is mentioned. Euclidean distance is replaced by the linearcombination of cityblock distance and chessboard distance, and reduce character point in calculating with results of part feature. The experimental results show that the algorithm can reduce the rate of time complexity and maintain robust quality at the same time, image matching efficiency is improved. Keywords-feature matching ; feature extraction; SIFT;
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Improved Algorithm about Subpixel Edge Detection Based on Zernike Moments and Three-Grayscale Pattern Audio Watermarking Algorithm Robust to TSM Based on Counter Propagation Neural Network Concentric Two-Portion Radial Polarized Beam with Phase Shift Application of Fractal Technique in Nonlinear Geophysical Signal Processing A New Method for Estimating the Number of Targets from Radar Returns
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1