Carlos Arias-Alcaide, C. Soguero-Ruíz, Paloma Santos-Alvarez, José F. Varona Arche, I. Mora-Jiménez
{"title":"基于自组织地图的局部Naïve贝叶斯预测COVID-19患者进化","authors":"Carlos Arias-Alcaide, C. Soguero-Ruíz, Paloma Santos-Alvarez, José F. Varona Arche, I. Mora-Jiménez","doi":"10.1109/BIBM55620.2022.9995321","DOIUrl":null,"url":null,"abstract":"The most recent Clinical Decision Support Systems use the potential of Machine Learning techniques to target clinical problems, avoiding the use of explicit rules. In this paper, a model to monitor and predict the risk of unfavourable evolution (UE) during hospitalization of COVID-19 patients is proposed. It combines Self Organizing Maps and local Naïve Bayes (NB) classifiers because of interpretation purposes. We used the results of six blood tests (leukocytes, D-dimer, among others) provided by a Spanish hospital group. The probabilistic approach allows us to get the daily risk of UE for each patient in an interpretable way. Several variants of the NB classifiers family have been explored, mainly weighting and likelihood estimation (parametric and nonparametric). Despite the over-simplified assumptions of the NB classifiers, they provided good predictive results in terms of sensitivity and specificity. The model with nonparametric likelihood estimation provided the best risk prediction over time even when designed with a limited number of samples. Specifically, the median value and interquartil range for the risk prediction were quite reliable even 10 days before the event day for patients hospitalized longer than 7 days. The risk median values also agree with the gold-standard for patients with a hospital stay shorter than 7 days, though the interquartil range can be too wide (probably because of the variability in the inpatient days - sometimes, just 2 days). Though a deepest analysis considering more patients and features would be convenient, our results show the potential of the proposed approach, both from a technical and clinical viewpoint.","PeriodicalId":210337,"journal":{"name":"2022 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Local Naïve Bayes for Predicting Evolution of COVID-19 Patients on Self Organizing Maps\",\"authors\":\"Carlos Arias-Alcaide, C. Soguero-Ruíz, Paloma Santos-Alvarez, José F. Varona Arche, I. Mora-Jiménez\",\"doi\":\"10.1109/BIBM55620.2022.9995321\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The most recent Clinical Decision Support Systems use the potential of Machine Learning techniques to target clinical problems, avoiding the use of explicit rules. In this paper, a model to monitor and predict the risk of unfavourable evolution (UE) during hospitalization of COVID-19 patients is proposed. It combines Self Organizing Maps and local Naïve Bayes (NB) classifiers because of interpretation purposes. We used the results of six blood tests (leukocytes, D-dimer, among others) provided by a Spanish hospital group. The probabilistic approach allows us to get the daily risk of UE for each patient in an interpretable way. Several variants of the NB classifiers family have been explored, mainly weighting and likelihood estimation (parametric and nonparametric). Despite the over-simplified assumptions of the NB classifiers, they provided good predictive results in terms of sensitivity and specificity. The model with nonparametric likelihood estimation provided the best risk prediction over time even when designed with a limited number of samples. Specifically, the median value and interquartil range for the risk prediction were quite reliable even 10 days before the event day for patients hospitalized longer than 7 days. The risk median values also agree with the gold-standard for patients with a hospital stay shorter than 7 days, though the interquartil range can be too wide (probably because of the variability in the inpatient days - sometimes, just 2 days). Though a deepest analysis considering more patients and features would be convenient, our results show the potential of the proposed approach, both from a technical and clinical viewpoint.\",\"PeriodicalId\":210337,\"journal\":{\"name\":\"2022 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIBM55620.2022.9995321\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBM55620.2022.9995321","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Local Naïve Bayes for Predicting Evolution of COVID-19 Patients on Self Organizing Maps
The most recent Clinical Decision Support Systems use the potential of Machine Learning techniques to target clinical problems, avoiding the use of explicit rules. In this paper, a model to monitor and predict the risk of unfavourable evolution (UE) during hospitalization of COVID-19 patients is proposed. It combines Self Organizing Maps and local Naïve Bayes (NB) classifiers because of interpretation purposes. We used the results of six blood tests (leukocytes, D-dimer, among others) provided by a Spanish hospital group. The probabilistic approach allows us to get the daily risk of UE for each patient in an interpretable way. Several variants of the NB classifiers family have been explored, mainly weighting and likelihood estimation (parametric and nonparametric). Despite the over-simplified assumptions of the NB classifiers, they provided good predictive results in terms of sensitivity and specificity. The model with nonparametric likelihood estimation provided the best risk prediction over time even when designed with a limited number of samples. Specifically, the median value and interquartil range for the risk prediction were quite reliable even 10 days before the event day for patients hospitalized longer than 7 days. The risk median values also agree with the gold-standard for patients with a hospital stay shorter than 7 days, though the interquartil range can be too wide (probably because of the variability in the inpatient days - sometimes, just 2 days). Though a deepest analysis considering more patients and features would be convenient, our results show the potential of the proposed approach, both from a technical and clinical viewpoint.