{"title":"神经广义预测自整定控制器","authors":"J. Quero, E. Camacho","doi":"10.1109/ICSYSE.1990.203123","DOIUrl":null,"url":null,"abstract":"A way in which Hopfield (see J.J. Hopfield, Proc. Nat. Acad. Sci. USA, vol.81, p.3088-92, (1984)) networks can be used to implement generalized predictive controllers is presented. A CARMA model of the process to be controlled, which is valid for most processes in industry, is used to illustrate the method. A set of recursive formulas to obtain the network parameters is given","PeriodicalId":259801,"journal":{"name":"1990 IEEE International Conference on Systems Engineering","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1990-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Neural generalized predictive self-tuning controllers\",\"authors\":\"J. Quero, E. Camacho\",\"doi\":\"10.1109/ICSYSE.1990.203123\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A way in which Hopfield (see J.J. Hopfield, Proc. Nat. Acad. Sci. USA, vol.81, p.3088-92, (1984)) networks can be used to implement generalized predictive controllers is presented. A CARMA model of the process to be controlled, which is valid for most processes in industry, is used to illustrate the method. A set of recursive formulas to obtain the network parameters is given\",\"PeriodicalId\":259801,\"journal\":{\"name\":\"1990 IEEE International Conference on Systems Engineering\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1990-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"1990 IEEE International Conference on Systems Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSYSE.1990.203123\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"1990 IEEE International Conference on Systems Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSYSE.1990.203123","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A way in which Hopfield (see J.J. Hopfield, Proc. Nat. Acad. Sci. USA, vol.81, p.3088-92, (1984)) networks can be used to implement generalized predictive controllers is presented. A CARMA model of the process to be controlled, which is valid for most processes in industry, is used to illustrate the method. A set of recursive formulas to obtain the network parameters is given