阿贝尔群的两方签名和验证的或有支付

Sergiu Bursuc, S. Mauw
{"title":"阿贝尔群的两方签名和验证的或有支付","authors":"Sergiu Bursuc, S. Mauw","doi":"10.1109/CSF54842.2022.9919654","DOIUrl":null,"url":null,"abstract":"The fair exchange problem has faced for a long time the bottleneck of a required trusted third party. The recent development of blockchains introduces a new type of party to this problem, whose trustworthiness relies on a public ledger and distributed computation. The challenge in this setting is to reconcile the minimalistic and public nature of blockchains with elaborate fair exchange requirements, from functionality to privacy. Zero-knowledge contingent payments (ZKCP) are a class of protocols that are promising in this direction, allowing the fair exchange of data for payment. We propose a new ZKCP protocol that, when compared to others, requires less computation from the blockchain and less interaction between parties. The protocol is based on two-party (weak) adaptor signatures, which we show how to instantiate from state of the art multiparty signing protocols. We improve the symbolic definition of ZKCP security and, for automated verification with Tamarin, we propose a general security reduction from the theory of abelian groups to the theory of exclusive or.","PeriodicalId":412553,"journal":{"name":"2022 IEEE 35th Computer Security Foundations Symposium (CSF)","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Contingent payments from two-party signing and verification for abelian groups\",\"authors\":\"Sergiu Bursuc, S. Mauw\",\"doi\":\"10.1109/CSF54842.2022.9919654\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The fair exchange problem has faced for a long time the bottleneck of a required trusted third party. The recent development of blockchains introduces a new type of party to this problem, whose trustworthiness relies on a public ledger and distributed computation. The challenge in this setting is to reconcile the minimalistic and public nature of blockchains with elaborate fair exchange requirements, from functionality to privacy. Zero-knowledge contingent payments (ZKCP) are a class of protocols that are promising in this direction, allowing the fair exchange of data for payment. We propose a new ZKCP protocol that, when compared to others, requires less computation from the blockchain and less interaction between parties. The protocol is based on two-party (weak) adaptor signatures, which we show how to instantiate from state of the art multiparty signing protocols. We improve the symbolic definition of ZKCP security and, for automated verification with Tamarin, we propose a general security reduction from the theory of abelian groups to the theory of exclusive or.\",\"PeriodicalId\":412553,\"journal\":{\"name\":\"2022 IEEE 35th Computer Security Foundations Symposium (CSF)\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 35th Computer Security Foundations Symposium (CSF)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CSF54842.2022.9919654\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 35th Computer Security Foundations Symposium (CSF)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSF54842.2022.9919654","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

长期以来,公平交易问题一直面临着需要可信第三方的瓶颈。最近区块链的发展为这一问题引入了一种新型的当事方,其可信度依赖于公共分类账和分布式计算。这种情况下的挑战是如何将区块链的简约和公共性质与从功能到隐私的精心设计的公平交换要求相协调。零知识或有支付(ZKCP)是在这个方向上有希望的一类协议,允许公平交换数据进行支付。我们提出了一个新的ZKCP协议,与其他协议相比,它需要更少的区块链计算和更少的各方交互。该协议基于两方(弱)适配器签名,我们将展示如何从最先进的多方签名协议实例化适配器签名。我们改进了ZKCP安全性的符号定义,并提出了从阿贝尔群理论到排他或理论的一般安全性约简。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Contingent payments from two-party signing and verification for abelian groups
The fair exchange problem has faced for a long time the bottleneck of a required trusted third party. The recent development of blockchains introduces a new type of party to this problem, whose trustworthiness relies on a public ledger and distributed computation. The challenge in this setting is to reconcile the minimalistic and public nature of blockchains with elaborate fair exchange requirements, from functionality to privacy. Zero-knowledge contingent payments (ZKCP) are a class of protocols that are promising in this direction, allowing the fair exchange of data for payment. We propose a new ZKCP protocol that, when compared to others, requires less computation from the blockchain and less interaction between parties. The protocol is based on two-party (weak) adaptor signatures, which we show how to instantiate from state of the art multiparty signing protocols. We improve the symbolic definition of ZKCP security and, for automated verification with Tamarin, we propose a general security reduction from the theory of abelian groups to the theory of exclusive or.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Cracking the Stateful Nut: Computational Proofs of Stateful Security Protocols using the Squirrel Proof Assistant N-Tube: Formally Verified Secure Bandwidth Reservation in Path-Aware Internet Architectures How Efficient are Replay Attacks against Vote Privacy? A Formal Quantitative Analysis Conditional Observational Equivalence and Off-line Guessing Attacks in Multiset Rewriting Machine-Checked Proofs of Privacy Against Malicious Boards for Selene & Co
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1