有限总体模型下分布估计算法的分析

Yan Wu, Yuping Wang, Xiaoxiong Liu
{"title":"有限总体模型下分布估计算法的分析","authors":"Yan Wu, Yuping Wang, Xiaoxiong Liu","doi":"10.1109/ICNC.2007.174","DOIUrl":null,"url":null,"abstract":"The convergence of estimation of distribution algorithms (EDAs) with finite population is analyzed in this paper. At first, the models of EDAs with finite population are designed by incorporating an error into expected distribution of parent population. Then the convergence of the EDAs is proved with finite population under three widely used selection schemes. The results show that EDAs converge to the optimal solutions within the range of error described in this paper.","PeriodicalId":250881,"journal":{"name":"Third International Conference on Natural Computation (ICNC 2007)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"An Analysis of Estimation of Distribution Algorithms with Finite Population Models\",\"authors\":\"Yan Wu, Yuping Wang, Xiaoxiong Liu\",\"doi\":\"10.1109/ICNC.2007.174\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The convergence of estimation of distribution algorithms (EDAs) with finite population is analyzed in this paper. At first, the models of EDAs with finite population are designed by incorporating an error into expected distribution of parent population. Then the convergence of the EDAs is proved with finite population under three widely used selection schemes. The results show that EDAs converge to the optimal solutions within the range of error described in this paper.\",\"PeriodicalId\":250881,\"journal\":{\"name\":\"Third International Conference on Natural Computation (ICNC 2007)\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Third International Conference on Natural Computation (ICNC 2007)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICNC.2007.174\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Third International Conference on Natural Computation (ICNC 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNC.2007.174","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文分析了有限种群分布估计算法的收敛性。首先,通过在亲本种群的期望分布中加入误差来设计有限种群的eda模型。然后在有限种群条件下证明了三种常用的选择方案的收敛性。结果表明,eda收敛于本文所描述的误差范围内的最优解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An Analysis of Estimation of Distribution Algorithms with Finite Population Models
The convergence of estimation of distribution algorithms (EDAs) with finite population is analyzed in this paper. At first, the models of EDAs with finite population are designed by incorporating an error into expected distribution of parent population. Then the convergence of the EDAs is proved with finite population under three widely used selection schemes. The results show that EDAs converge to the optimal solutions within the range of error described in this paper.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Emotional Evaluation of Color Patterns Based on Rough Sets Uniqueness of Linear Combinations of Ridge Functions PID Neural Network Temperature Control System in Plastic Injecting-moulding Machine The Study of Membrane Fouling Modeling Method Based on Wavelet Neural Network for Sewage Treatment Membrane Bioreactor Simulation and Research of the PCB Vias Effects
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1