第七章工程勘察与评价

M. H. D. Freitas, James S. Griffiths, N. Press, J. Russell, A. Parkes, I. Stimpson, D. Norbury, C. Coleman, J. Black, G. Towler, K. Thatcher
{"title":"第七章工程勘察与评价","authors":"M. H. D. Freitas, James S. Griffiths, N. Press, J. Russell, A. Parkes, I. Stimpson, D. Norbury, C. Coleman, J. Black, G. Towler, K. Thatcher","doi":"10.1144/EGSP28.7","DOIUrl":null,"url":null,"abstract":"Abstract Ground affected by periglacial and glacial processes can be among the most variable formed by nature. Previous chapters have graphically illustrated this variability and explained the topographic and sedimentary associations to be expected within former and present-day cold regions. This chapter shows how that background is needed to design and execute an investigation for predicting either the ground response to engineering change or the volumes of material the ground contains. Such an investigation of the ground is also needed to explain its current and former state of stability on slopes and its natural groundwater flow. The starting point of any such investigation is a conceptual model of the ground which subsequent investigation tests and refines; investigations conducted without such a model can easily become sterile and expensive exercises in collecting data. Such a model starts with knowledge of landscape, cold climate processes and their products, initially refined with the aid of a desk study. This then develops with each phase of the investigation, starting with what is known via desk studies, and progressing through what can be readily seen by walkover surveys and shallow investigations, including surface geophysics and remote sensing, all leading towards a model that can be tested directly by various intrusive investigations. Techniques appropriate for such investigations, including sampling, in glaciated and frost-disturbed ground both onshore and offshore are reviewed. Great care must be taken with the description of coarse materials, glaciotectonic structures and the materials within them; a unique feature of this chapter is the correlation it presents between the engineering descriptions of glacial sediments, as used in ground engineering, and the descriptions used by glacial sedimentologists for the same materials. Water levels are also obtained during these investigations, and in these types of ground they are often misinterpreted by applying thinking more appropriate to aquifer hydrogeology. A surprising feature of glaciated ground is its low permeability overall, and the correct interpretation of heads measured in such environments is often that for aquitards rather than aquifers. The initial conceptual model starts with little more than an idea and a broad outline, and evolves as the investigation progresses. It should continue to evolve throughout construction as more and more of the ground is exposed and its behaviour is better known; in this way, the ground model can be thought of as a living document, especially appropriate in such variable ground. The chapter concludes with a review of how this information can be brought together as three-dimensional models that effectively communicate the knowns and unknowns of a volume of ground and their associated risks, in both deterministic and probabilistic ways.","PeriodicalId":266864,"journal":{"name":"Engineering Geology Special Publication","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Chapter 7 Engineering investigation and assessment\",\"authors\":\"M. H. D. Freitas, James S. Griffiths, N. Press, J. Russell, A. Parkes, I. Stimpson, D. Norbury, C. Coleman, J. Black, G. Towler, K. Thatcher\",\"doi\":\"10.1144/EGSP28.7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Ground affected by periglacial and glacial processes can be among the most variable formed by nature. Previous chapters have graphically illustrated this variability and explained the topographic and sedimentary associations to be expected within former and present-day cold regions. This chapter shows how that background is needed to design and execute an investigation for predicting either the ground response to engineering change or the volumes of material the ground contains. Such an investigation of the ground is also needed to explain its current and former state of stability on slopes and its natural groundwater flow. The starting point of any such investigation is a conceptual model of the ground which subsequent investigation tests and refines; investigations conducted without such a model can easily become sterile and expensive exercises in collecting data. Such a model starts with knowledge of landscape, cold climate processes and their products, initially refined with the aid of a desk study. This then develops with each phase of the investigation, starting with what is known via desk studies, and progressing through what can be readily seen by walkover surveys and shallow investigations, including surface geophysics and remote sensing, all leading towards a model that can be tested directly by various intrusive investigations. Techniques appropriate for such investigations, including sampling, in glaciated and frost-disturbed ground both onshore and offshore are reviewed. Great care must be taken with the description of coarse materials, glaciotectonic structures and the materials within them; a unique feature of this chapter is the correlation it presents between the engineering descriptions of glacial sediments, as used in ground engineering, and the descriptions used by glacial sedimentologists for the same materials. Water levels are also obtained during these investigations, and in these types of ground they are often misinterpreted by applying thinking more appropriate to aquifer hydrogeology. A surprising feature of glaciated ground is its low permeability overall, and the correct interpretation of heads measured in such environments is often that for aquitards rather than aquifers. The initial conceptual model starts with little more than an idea and a broad outline, and evolves as the investigation progresses. It should continue to evolve throughout construction as more and more of the ground is exposed and its behaviour is better known; in this way, the ground model can be thought of as a living document, especially appropriate in such variable ground. The chapter concludes with a review of how this information can be brought together as three-dimensional models that effectively communicate the knowns and unknowns of a volume of ground and their associated risks, in both deterministic and probabilistic ways.\",\"PeriodicalId\":266864,\"journal\":{\"name\":\"Engineering Geology Special Publication\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering Geology Special Publication\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1144/EGSP28.7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Geology Special Publication","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1144/EGSP28.7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

受冰缘和冰川作用影响的地表是自然界形成的最易变化的地表之一。前面的章节已经图解地说明了这种变化,并解释了在过去和现在的寒冷地区可能出现的地形和沉积联系。本章展示了如何在设计和执行一项调查时需要这些背景,以预测工程变化的地面反应或地面所含材料的体积。这样的地面调查也需要解释其目前和以前的稳定状态的斜坡和它的天然地下水流动。任何这类调查的起点都是一个基础的概念模型,随后的调查将对其进行检验和完善;没有这种模式的调查很容易成为无用的和昂贵的数据收集工作。这样的模型从景观、寒冷气候过程及其产物的知识开始,最初是在书桌研究的帮助下完善的。然后,随着调查的每个阶段的发展,从通过桌面研究已知的内容开始,并通过步行调查和浅层调查(包括地面地球物理和遥感)容易看到的内容进行进展,所有这些都导致可以通过各种侵入性调查直接测试的模型。审查了在陆上和海上的冰川和受霜扰动的地面进行这种调查的适当技术,包括取样。对粗糙物质、冰川构造及其内部物质的描述必须十分小心;本章的一个独特之处在于,它展示了冰川沉积物的工程描述(用于地面工程)与冰川沉积学家对相同材料的描述之间的相关性。在这些调查过程中也获得了水位,在这些类型的地面上,它们经常被应用更适合于含水层水文地质学的思维所误解。冰川地面的一个令人惊讶的特点是其整体渗透性低,在这种环境中测量的水头的正确解释通常是对含水层而不是含水层的解释。最初的概念模型开始时只有一个想法和一个大致的轮廓,并随着调查的进展而发展。随着越来越多的地面暴露出来,人们对其行为的了解越来越多,它应该在整个施工过程中继续发展;这样,地面模型就可以被看作是一个活的文件,尤其适用于这种多变的地面。本章最后回顾了如何将这些信息整合为三维模型,以确定性和概率两种方式有效地传达大量地面的已知和未知及其相关风险。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Chapter 7 Engineering investigation and assessment
Abstract Ground affected by periglacial and glacial processes can be among the most variable formed by nature. Previous chapters have graphically illustrated this variability and explained the topographic and sedimentary associations to be expected within former and present-day cold regions. This chapter shows how that background is needed to design and execute an investigation for predicting either the ground response to engineering change or the volumes of material the ground contains. Such an investigation of the ground is also needed to explain its current and former state of stability on slopes and its natural groundwater flow. The starting point of any such investigation is a conceptual model of the ground which subsequent investigation tests and refines; investigations conducted without such a model can easily become sterile and expensive exercises in collecting data. Such a model starts with knowledge of landscape, cold climate processes and their products, initially refined with the aid of a desk study. This then develops with each phase of the investigation, starting with what is known via desk studies, and progressing through what can be readily seen by walkover surveys and shallow investigations, including surface geophysics and remote sensing, all leading towards a model that can be tested directly by various intrusive investigations. Techniques appropriate for such investigations, including sampling, in glaciated and frost-disturbed ground both onshore and offshore are reviewed. Great care must be taken with the description of coarse materials, glaciotectonic structures and the materials within them; a unique feature of this chapter is the correlation it presents between the engineering descriptions of glacial sediments, as used in ground engineering, and the descriptions used by glacial sedimentologists for the same materials. Water levels are also obtained during these investigations, and in these types of ground they are often misinterpreted by applying thinking more appropriate to aquifer hydrogeology. A surprising feature of glaciated ground is its low permeability overall, and the correct interpretation of heads measured in such environments is often that for aquitards rather than aquifers. The initial conceptual model starts with little more than an idea and a broad outline, and evolves as the investigation progresses. It should continue to evolve throughout construction as more and more of the ground is exposed and its behaviour is better known; in this way, the ground model can be thought of as a living document, especially appropriate in such variable ground. The chapter concludes with a review of how this information can be brought together as three-dimensional models that effectively communicate the knowns and unknowns of a volume of ground and their associated risks, in both deterministic and probabilistic ways.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
About this title ‐ Developments in Engineering Geology Siting method of the ancients in the excavation of Longyou Caverns, 2000 years ago Study of geology and Carboniferous subcrop topography upon engineering geological mapping of Moscow territory Chapter 2 The Quaternary About this title ‐ Engineering Geology and Geomorphology of Glaciated and Periglaciated Terrains – Engineering Group Working Party Report
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1