DENESTO:一个视频解码能量估计和可视化工具

Matthias Kränzler, Christian Herglotz, A. Kaup
{"title":"DENESTO:一个视频解码能量估计和可视化工具","authors":"Matthias Kränzler, Christian Herglotz, A. Kaup","doi":"10.1109/VCIP49819.2020.9301877","DOIUrl":null,"url":null,"abstract":"In previous research, it is shown that the decoding energy demand of several video codecs can be estimated accurately by using bit stream feature-based models. Therefore, we show in this paper that the visualization with the Decoding Energy Estimation Tool (DENESTO) can help to improve the understanding of the energy demand of the decoder.","PeriodicalId":431880,"journal":{"name":"2020 IEEE International Conference on Visual Communications and Image Processing (VCIP)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"DENESTO: A Tool for Video Decoding Energy Estimation and Visualization\",\"authors\":\"Matthias Kränzler, Christian Herglotz, A. Kaup\",\"doi\":\"10.1109/VCIP49819.2020.9301877\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In previous research, it is shown that the decoding energy demand of several video codecs can be estimated accurately by using bit stream feature-based models. Therefore, we show in this paper that the visualization with the Decoding Energy Estimation Tool (DENESTO) can help to improve the understanding of the energy demand of the decoder.\",\"PeriodicalId\":431880,\"journal\":{\"name\":\"2020 IEEE International Conference on Visual Communications and Image Processing (VCIP)\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Conference on Visual Communications and Image Processing (VCIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VCIP49819.2020.9301877\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Visual Communications and Image Processing (VCIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VCIP49819.2020.9301877","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

以往的研究表明,采用基于比特流特征的模型可以准确地估计出多种视频编解码器的解码能量需求。因此,我们在本文中表明,使用解码能量估计工具(DENESTO)的可视化可以帮助提高对解码器能量需求的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
DENESTO: A Tool for Video Decoding Energy Estimation and Visualization
In previous research, it is shown that the decoding energy demand of several video codecs can be estimated accurately by using bit stream feature-based models. Therefore, we show in this paper that the visualization with the Decoding Energy Estimation Tool (DENESTO) can help to improve the understanding of the energy demand of the decoder.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Mixed Appearance-based and Coding Distortion-based CNN Fusion Approach for In-loop Filtering in Video Coding APL: Adaptive Preloading of Short Video with Lyapunov Optimization A Novel Visual Analysis Oriented Rate Control Scheme for HEVC A Theory of Occlusion for Improving Rendering Quality of Views A Progressive Fast CU Split Decision Scheme for AVS3
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1