医学领域的可解释词嵌入

Kishlay Jha, Yaqing Wang, Guangxu Xun, Aidong Zhang
{"title":"医学领域的可解释词嵌入","authors":"Kishlay Jha, Yaqing Wang, Guangxu Xun, Aidong Zhang","doi":"10.1109/ICDM.2018.00135","DOIUrl":null,"url":null,"abstract":"Word embeddings are finding their increasing application in a variety of biomedical Natural Language Processing (bioNLP) tasks, ranging from drug discovery to automated disease diagnosis. While these word embeddings in their entirety have shown meaningful syntactic and semantic regularities, however, the meaning of individual dimensions remains elusive. This becomes problematic both in general and particularly in sensitive domains such as bio-medicine, wherein, the interpretability of results is crucial to its widespread adoption. To address this issue, in this study, we aim to improve the interpretability of pre-trained word embeddings generated from a text corpora, and in doing so provide a systematic approach to formalize the problem. More specifically, we exploit the rich categorical knowledge present in the biomedical domain, and propose to learn a transformation matrix that transforms the input embeddings to a new space where they are both interpretable and retain their original expressive features. Experiments conducted on the largest available biomedical corpus suggests that the model is capable of performing interpretability that resembles closely to the human-level intuition.","PeriodicalId":286444,"journal":{"name":"2018 IEEE International Conference on Data Mining (ICDM)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"Interpretable Word Embeddings for Medical Domain\",\"authors\":\"Kishlay Jha, Yaqing Wang, Guangxu Xun, Aidong Zhang\",\"doi\":\"10.1109/ICDM.2018.00135\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Word embeddings are finding their increasing application in a variety of biomedical Natural Language Processing (bioNLP) tasks, ranging from drug discovery to automated disease diagnosis. While these word embeddings in their entirety have shown meaningful syntactic and semantic regularities, however, the meaning of individual dimensions remains elusive. This becomes problematic both in general and particularly in sensitive domains such as bio-medicine, wherein, the interpretability of results is crucial to its widespread adoption. To address this issue, in this study, we aim to improve the interpretability of pre-trained word embeddings generated from a text corpora, and in doing so provide a systematic approach to formalize the problem. More specifically, we exploit the rich categorical knowledge present in the biomedical domain, and propose to learn a transformation matrix that transforms the input embeddings to a new space where they are both interpretable and retain their original expressive features. Experiments conducted on the largest available biomedical corpus suggests that the model is capable of performing interpretability that resembles closely to the human-level intuition.\",\"PeriodicalId\":286444,\"journal\":{\"name\":\"2018 IEEE International Conference on Data Mining (ICDM)\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Conference on Data Mining (ICDM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDM.2018.00135\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Data Mining (ICDM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDM.2018.00135","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

摘要

词嵌入在各种生物医学自然语言处理(bioNLP)任务中的应用越来越多,从药物发现到自动疾病诊断。虽然这些词嵌入整体上显示出有意义的句法和语义规律,但是,单个维度的含义仍然难以捉摸。这在一般情况下,特别是在生物医学等敏感领域都成为问题,在这些领域,结果的可解释性对其广泛采用至关重要。为了解决这个问题,在本研究中,我们的目标是提高从文本语料库生成的预训练词嵌入的可解释性,并以此提供一种系统的方法来形式化这个问题。更具体地说,我们利用生物医学领域中丰富的分类知识,并提出学习一个转换矩阵,将输入嵌入转换到一个新的空间,在这个空间中,它们既可以解释,又保留了它们原来的表达特征。在最大的可用生物医学语料库上进行的实验表明,该模型能够执行与人类直觉非常相似的可解释性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Interpretable Word Embeddings for Medical Domain
Word embeddings are finding their increasing application in a variety of biomedical Natural Language Processing (bioNLP) tasks, ranging from drug discovery to automated disease diagnosis. While these word embeddings in their entirety have shown meaningful syntactic and semantic regularities, however, the meaning of individual dimensions remains elusive. This becomes problematic both in general and particularly in sensitive domains such as bio-medicine, wherein, the interpretability of results is crucial to its widespread adoption. To address this issue, in this study, we aim to improve the interpretability of pre-trained word embeddings generated from a text corpora, and in doing so provide a systematic approach to formalize the problem. More specifically, we exploit the rich categorical knowledge present in the biomedical domain, and propose to learn a transformation matrix that transforms the input embeddings to a new space where they are both interpretable and retain their original expressive features. Experiments conducted on the largest available biomedical corpus suggests that the model is capable of performing interpretability that resembles closely to the human-level intuition.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Entire Regularization Path for Sparse Nonnegative Interaction Model Accelerating Experimental Design by Incorporating Experimenter Hunches Title Page i An Efficient Many-Class Active Learning Framework for Knowledge-Rich Domains Social Recommendation with Missing Not at Random Data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1