基于扩展多属性轮廓和引导双边滤波的光谱-空间高光谱图像分类

Kunzhun Wang, Rui Huang, Qian Song
{"title":"基于扩展多属性轮廓和引导双边滤波的光谱-空间高光谱图像分类","authors":"Kunzhun Wang, Rui Huang, Qian Song","doi":"10.1109/CSMA.2015.54","DOIUrl":null,"url":null,"abstract":"The combination of spectral and spatial information for classification of hyper spectral image is an effective way in improving classification accuracy. In the paper, we proposed a new spectral-spatial method for textural feature extraction based on morphological attribute profiles and guided bilateral filter. Firstly, we obtained multi-level characters through the cascade of many attribute profiles to present the spatial and spectral information of remote sensing image. Then, bilateral filter preserved the edges of features with guide of the segmentation image generated by entropy rate super pixel algorithm. Finally, a pixel-wise classifier, e.g., Support vector machine and sparse representation, is used for classification based on the features. Experiments of two benchmark hyper spectral data sets showed better performance of the proposed method than other state-of-the-art methods.","PeriodicalId":205396,"journal":{"name":"2015 International Conference on Computer Science and Mechanical Automation (CSMA)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Spectral-Spatial Hyperspectral Image Classification Using Extended Multi Attribute Profiles and Guided Bilateral Filter\",\"authors\":\"Kunzhun Wang, Rui Huang, Qian Song\",\"doi\":\"10.1109/CSMA.2015.54\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The combination of spectral and spatial information for classification of hyper spectral image is an effective way in improving classification accuracy. In the paper, we proposed a new spectral-spatial method for textural feature extraction based on morphological attribute profiles and guided bilateral filter. Firstly, we obtained multi-level characters through the cascade of many attribute profiles to present the spatial and spectral information of remote sensing image. Then, bilateral filter preserved the edges of features with guide of the segmentation image generated by entropy rate super pixel algorithm. Finally, a pixel-wise classifier, e.g., Support vector machine and sparse representation, is used for classification based on the features. Experiments of two benchmark hyper spectral data sets showed better performance of the proposed method than other state-of-the-art methods.\",\"PeriodicalId\":205396,\"journal\":{\"name\":\"2015 International Conference on Computer Science and Mechanical Automation (CSMA)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 International Conference on Computer Science and Mechanical Automation (CSMA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CSMA.2015.54\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Computer Science and Mechanical Automation (CSMA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSMA.2015.54","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

结合光谱信息和空间信息对高光谱图像进行分类是提高分类精度的有效途径。本文提出了一种基于形态属性轮廓和引导双边滤波的纹理特征提取新方法。首先,通过多个属性轮廓的级联得到多层次特征,以呈现遥感影像的空间和光谱信息;然后,在熵率超像素算法生成的分割图像的引导下,双边滤波保留特征的边缘;最后,使用像素分类器,如支持向量机和稀疏表示,进行基于特征的分类。两个基准高光谱数据集的实验表明,该方法的性能优于其他最新方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Spectral-Spatial Hyperspectral Image Classification Using Extended Multi Attribute Profiles and Guided Bilateral Filter
The combination of spectral and spatial information for classification of hyper spectral image is an effective way in improving classification accuracy. In the paper, we proposed a new spectral-spatial method for textural feature extraction based on morphological attribute profiles and guided bilateral filter. Firstly, we obtained multi-level characters through the cascade of many attribute profiles to present the spatial and spectral information of remote sensing image. Then, bilateral filter preserved the edges of features with guide of the segmentation image generated by entropy rate super pixel algorithm. Finally, a pixel-wise classifier, e.g., Support vector machine and sparse representation, is used for classification based on the features. Experiments of two benchmark hyper spectral data sets showed better performance of the proposed method than other state-of-the-art methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Research on Control Strategy of Two-Wheeled Self-Balancing Robot Research of Crane Scheduling Based on Birth and Death Chain in the Production Shop Field Improving Steganalysis by Fusing SVM Classifiers for JPEG Images Intelligent Medicine Box Monitoring and Management System An Efficient Self-Healing Group Key Management with Lower Storage for Wireless Sensor Network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1