利用探索缓解推荐系统中的闭环效应

A. H. Jadidinejad, C. Macdonald, I. Ounis
{"title":"利用探索缓解推荐系统中的闭环效应","authors":"A. H. Jadidinejad, C. Macdonald, I. Ounis","doi":"10.1145/3397271.3401230","DOIUrl":null,"url":null,"abstract":"Recommendation systems are often trained and evaluated based on users' interactions obtained through the use of an existing, already deployed, recommendation system. Hence the deployed recommendation systems will recommend some items and not others, and items will have varying levels of exposure to users. As a result, the collected feedback dataset (including most public datasets) can be skewed towards the particular items favored by the deployed model. In this manner, training new recommender systems from interaction data obtained from a previous model creates a feedback loop, i.e. a closed loop feedback. In this paper, we first introduce the closed loop feedback and then investigate the effect of closed loop feedback in both the training and offline evaluation of recommendation models, in contrast to a further exploration of the users' preferences (obtained from the randomly presented items). To achieve this, we make use of open loop datasets, where randomly selected items are presented to users for feedback. Our experiments using an open loop Yahoo! dataset reveal that there is a strong correlation between the deployed model and a new model that is trained based on the closed loop feedback. Moreover, with the aid of exploration we can decrease the effect of closed loop feedback and obtain new and better generalizable models.","PeriodicalId":252050,"journal":{"name":"Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Using Exploration to Alleviate Closed Loop Effects in Recommender Systems\",\"authors\":\"A. H. Jadidinejad, C. Macdonald, I. Ounis\",\"doi\":\"10.1145/3397271.3401230\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recommendation systems are often trained and evaluated based on users' interactions obtained through the use of an existing, already deployed, recommendation system. Hence the deployed recommendation systems will recommend some items and not others, and items will have varying levels of exposure to users. As a result, the collected feedback dataset (including most public datasets) can be skewed towards the particular items favored by the deployed model. In this manner, training new recommender systems from interaction data obtained from a previous model creates a feedback loop, i.e. a closed loop feedback. In this paper, we first introduce the closed loop feedback and then investigate the effect of closed loop feedback in both the training and offline evaluation of recommendation models, in contrast to a further exploration of the users' preferences (obtained from the randomly presented items). To achieve this, we make use of open loop datasets, where randomly selected items are presented to users for feedback. Our experiments using an open loop Yahoo! dataset reveal that there is a strong correlation between the deployed model and a new model that is trained based on the closed loop feedback. Moreover, with the aid of exploration we can decrease the effect of closed loop feedback and obtain new and better generalizable models.\",\"PeriodicalId\":252050,\"journal\":{\"name\":\"Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3397271.3401230\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3397271.3401230","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

推荐系统通常是根据用户通过使用现有的、已经部署的推荐系统获得的交互来训练和评估的。因此,部署的推荐系统将推荐一些项目而不推荐其他项目,这些项目对用户的曝光程度也会有所不同。因此,收集到的反馈数据集(包括大多数公共数据集)可能会偏向于部署模型所青睐的特定项目。通过这种方式,从先前模型获得的交互数据中训练新的推荐系统创建了一个反馈回路,即闭环反馈。在本文中,我们首先引入了闭环反馈,然后研究了闭环反馈在推荐模型的训练和离线评估中的效果,而不是进一步探索用户的偏好(从随机呈现的项目中获得)。为了实现这一点,我们使用开环数据集,其中随机选择的项目呈现给用户反馈。我们的实验使用开环Yahoo!数据集显示,部署的模型与基于闭环反馈训练的新模型之间存在很强的相关性。此外,借助探索可以减少闭环反馈的影响,得到新的更好的可泛化模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Using Exploration to Alleviate Closed Loop Effects in Recommender Systems
Recommendation systems are often trained and evaluated based on users' interactions obtained through the use of an existing, already deployed, recommendation system. Hence the deployed recommendation systems will recommend some items and not others, and items will have varying levels of exposure to users. As a result, the collected feedback dataset (including most public datasets) can be skewed towards the particular items favored by the deployed model. In this manner, training new recommender systems from interaction data obtained from a previous model creates a feedback loop, i.e. a closed loop feedback. In this paper, we first introduce the closed loop feedback and then investigate the effect of closed loop feedback in both the training and offline evaluation of recommendation models, in contrast to a further exploration of the users' preferences (obtained from the randomly presented items). To achieve this, we make use of open loop datasets, where randomly selected items are presented to users for feedback. Our experiments using an open loop Yahoo! dataset reveal that there is a strong correlation between the deployed model and a new model that is trained based on the closed loop feedback. Moreover, with the aid of exploration we can decrease the effect of closed loop feedback and obtain new and better generalizable models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
MHM: Multi-modal Clinical Data based Hierarchical Multi-label Diagnosis Prediction Correlated Features Synthesis and Alignment for Zero-shot Cross-modal Retrieval DVGAN Models Versus Satisfaction: Towards a Better Understanding of Evaluation Metrics Global Context Enhanced Graph Neural Networks for Session-based Recommendation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1